• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 17
    • 下载费用:30 金币  

    重庆时时彩中奖奖金: 一种适合于考虑风电随机特性的电力系统的电网规划方法.pdf

    关 键 词:
    一种 适合于 考虑 随机 特性 电力系统 电网 规划 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201410054609.7

    申请日:

    2014.02.18

    公开号:

    CN103793612A

    公开日:

    2014.05.14

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||实质审查的生效IPC(主分类):G06F 19/00申请日:20140218|||公开
    IPC分类号: G06F19/00(2011.01)I; G06Q50/06(2012.01)I 主分类号: G06F19/00
    申请人: 广西大学
    发明人: 黎静华; 兰飞; 曾炎; 韦化
    地址: 530004 广西壮族自治区南宁市大学路100号广西大学电气工程学院
    优先权:
    专利代理机构: 武汉东喻专利代理事务所(普通合伙) 42224 代理人: 方可
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201410054609.7

    授权公告号:

    ||||||

    法律状态公告日:

    2016.06.29|||2014.06.11|||2014.05.14

    法律状态类型:

    授权|||实质审查的生效|||公开

    摘要

    本发明公开了一种适合于考虑风电随机特性的电力系统的电网规划方法,包括构建考虑风电的电网规划模型,获取随机变量风电出力和负荷的极限场景,并基于田口直交表,根据田口直交表获得风机出力和负荷的所有极限场景的H个测试场景,将田口直交表中各变量的水平转换为各自对应的水平值,将每一个测试场景中每个变量的水平值代入电网规划模型中,得到H组确定性式子;采用MINLP问题中的外逼近算法对H组确定性式子进行求解,得到最终电网规划方案。本发明在获取风功率出力概率特性的基础上,选择风功率出力的极限值,基于田口直交表,采用外逼近算法对所建模型进行求解,得到一种适用于求解大规模风电接入电力系统的电网规划方法,保证电力系统能够应对风电的随机性。

    权利要求书

    权利要求书
    1.  一种适合于考虑风电随机特性的电力系统的电网规划方法,其特征在于,包括下述步骤:
    (1)构建考虑风电的电网规划模型;
    所述电网规划模型的目标函数为:所述电网规划模型的约束条件包括:直流形式的潮流方程S×Pij,h+Gh+Uh+Rh=Dh+Wh、线路传输容量约束火电机组出力约束切负荷约束0≤Rh≤Dh;弃风量约束0≤Wh≤Yh;每条走廊可架设线路的回数约束
    S为节点注入功率与支路有功潮流关联矩阵,i、j分别为支路i-j中的两个节点,βij为支路i-j的电纳,θi,h为场景h中节点i的电压相角,θj,h为场景h中节点j的电压相角,cij为支路i-j中增加一条线路的费用,nij为增加到支路i-j的线路回数,α为切负荷与弃风量的惩罚因子,h为场景,H为风机出力和负荷的所有极限场景中测试场景的总数,ri,h为场景h的切负荷量数组中第i个元素,wi,h为场景h的弃风量数组中第i个元素,pij,h为场景h的支路有功潮流数组中的元素,为支路i-j中原有的线路回数,为每条增加到支路i-j的线路的有功潮流上限,为火电机组最大有功出力数组,Gh为场景h的火电机组有功出力数组,Rh为场景h的切负荷量数组,Dh为场景h的负荷预测值数组,Uh为场景h的风电场有功出力数组,Wh为场景h的弃风量数组,为支路i-j中可增加线路回数的最大值;
    (2)获取随机变量风电出力u和负荷d的极限场景,并根据所述随机变量风电出力u和负荷d的极限场景获得田口直交表;
    (3)根据所述田口直交表获得风机出力和负荷的所有极限场景的H个测试场景,将田口直交表中各变量的水平转换为各自对应的水平值,将每 一个测试场景中每个变量的水平值代入所述电网规划模型中,得到H组确定性式子;
    (4)采用MINLP问题中的外逼近算法对所述H组确定性式子进行求解,得到最终电网规划方案。

    说明书

    说明书一种适合于考虑风电随机特性的电力系统的电网规划方法
    技术领域
    本发明属于风力发电技术领域,更具体地,涉及一种适合于考虑风电随机特性的电力系统的电网规划方法。
    背景技术
    由于煤炭、石油等不可再生能源的日益枯竭及其对环境的严重污染,世界各国都在致力于寻求一种经济、环保、可靠的新能源。风电因其无污染、可再生等特性备受全球的关注。然而,风电出力具有波动性、随机性和低可调性,风电的不断并网,给电力系统的安全稳定运行带来了新的挑战,也给电网规划带来了难题。常规的电网规划方法建立在确定的电源结构和负荷水平之下,无法应对风电的随机性。因此,有必要考虑风电的随机特性,使电力系统能够灵活地接纳风电。在中国发明专利申请文件(公开号为CN102545258A)中公开了一种大规模风电并网的电网优化规划方法,该方法综合考虑新建线路投资和风电综合效益两个方面,利用网架规划数据、系统运行预测数据、风电规划数据,考虑风电出力的“尖峰特性”,通过允许概率较小的风电出力尖峰值的一定损失保证电网规划方案的经济合理性。
    上述文件中,概率较少的风电尖峰值有时会导致电力系统遭受特大的损失,风功率的选取完全依据历史数据,并未考虑风功率的随机性,所得到的规划方案也难以适应风功率的随机变化。
    发明内容
    针对现有技术的以上缺陷或改进需求,本发明提供了一种适合于考虑风电随机特性的电力系统的电网规划方法,其目的在于考虑风电出力的随 机特性,将考虑风电接入的不确定性电网规划模型转换为确定性模型,并采用外逼近方法对模型进行求解,由此解决了考虑风电的电网规划问题中模型复杂、求解困难、计算量大的技术问题。
    本发明提供的适合于考虑风电随机特性的电力系统的电网规划方法,其特征在于,包括下述步骤:
    (1)构建考虑风电的电网规划模型;
    所述电网规划模型的目标函数为:所述电网规划模型的约束条件包括:直流形式的潮流方程S×Pij,h+Gh+Uh+Rh=Dh+Wh、线路传输容量约束火电机组出力约束切负荷约束0≤Rh≤Dh;弃风量约束0≤Wh≤Uh;每条走廊可架设线路的回数约束
    S为节点注入功率与支路有功潮流关联矩阵,i、j分别为支路i-j中的两个节点,βij为支路i-j的电纳,θi,h为场景h中节点i的电压相角,θj,h为场景h中节点j的电压相角,cij为支路i-j中增加一条线路的费用,nij为增加到支路i-j的线路回数,α为切负荷与弃风量的惩罚因子,h为场景,H为风机出力和负荷的所有极限场景中测试场景的总数,ri,h为场景h的切负荷量数组中第i个元素,wi,h为场景h的弃风量数组中第i个元素,pij,h为场景h的支路有功潮流数组中的元素,为支路i-j中原有的线路回数,为每条增加到支路i-j的线路的有功潮流上限,为火电机组最大有功出力数组,Gh为场景h的火电机组有功出力数组,Rh为场景h的切负荷量数组,Dh为场景h的负荷预测值数组,Uh为场景h的风电场有功出力数组,Wh为场景h的弃风量数组,为支路i-j中可增加线路回数的最大值;
    (2)获取随机变量风电出力u和负荷d的极限场景,并根据所述随机变量风电出力u和负荷d的极限场景获得田口直交表;
    (3)根据所述田口直交表获得风机出力和负荷的所有极限场景的H个测试场景,将田口直交表中各变量的水平转换为各自对应的水平值,将每一个测试场景中每个变量的水平值代入所述电网规划模型中,得到H组确定性式子;
    (4)采用MINLP问题中的外逼近算法对所述H组确定性式子进行求解,得到最终电网规划方案。
    本发明立足于计及风功率的随机性,在获取风功率出力概率特性的基础上,选择风功率出力的极限值,基于田口直交表,采用MINLP模型中的外逼近算法对所建模型进行求解,得到一种适用于求解大规模风电接入电力系统的电网规划研究方法,保证电力系统能够应对风电的随机性。
    附图说明
    图1是本发明实施例提供的一种适合于考虑风电随机特性的电力系统的电网规划方法的实现流程图;
    图2是本发明实施例提供的田口直交表L4(23)示意图;
    图3是本发明实施例提供的修正Garver6系统拓扑结构示意图。
    具体实施方式
    为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
    本发明在统计风电出力特性的基础下,选取风机的极限取值,基于田口直交表(Orthogonal Array),利用较少的场景提供良好的统计信息,从所有可能的场景中生成极限场景,将考虑风电的不确定性电网规划模型转化为确定性模型。模型中考虑了输电线路剩余容量,进一步有效应对风机出 力的随机性。本发明采用MINLP(mixed-integer nonlinear programming)问题中的外逼近算法(Outer-Approximation Method)对所建模型进行求解,并用Gaver6节点系统进行了测试,结果证明了所提发明能够使电力系统有效应对风电的随机性,并大大减少了计算量,降低了求解模型的难度。
    本发明的目的在于针对风电的随机性,选取风电出力的极限取值,使电力系统能随机应对风电出力的随机性,采用MINLP问题中的外逼近算法对所建模型进行求解,得到一种适用于大规模风电接入的电网规划模型求解方法。
    本发明的技术方案如下:
    (1)建立考虑风电的电网规划模型。
    电网规划的目的在于寻求一个最优的经济方案,保证电力系统在不同的运行方式下能够正常运行??悸欠绲绲牡缤婊P褪且桓龌旌险窍咝运婊婊P?,其求解难度会随着变量数据量的增大而增大,甚至无法找到可行解。因此,本发明建立基于极限场景的考虑风电的电网规划模型(如式(1)所示),不仅可将不确定性规划问题转化为确定性规划问题,而且大大降低了求解难度。式(1)表示以架设成本最小为目标,并尽可能使电网不发生切负荷与弃风现象。式(1.1)和(1.2)为直流形式的潮流方程。式(1.3)为线路传输容量约束。所形成的规划方案中,会出现部分线路负载偏高,重载线路会导致输电阻塞。而在实际的电网运行中,线路运行一般都留有充足的裕度,调度人员会调整线路潮流,平衡各线路的负载率。为避免重载线路因规划问题而造成运行后无法缓解的局面,在规划阶段就应该将线路负载水平作为一项重要的规划内容,更能应对风机出力的随机性。本发明定义线路平均剩余容量ε来衡量线路的负载水平,ε越小,说明该线路的负载水平越低,越不利于适应电网运行条件的变化。本发明采取线路功率不超过线路容量0.8的措施,以防止形成的方案中线路负载过高。式(1.4)为火电机组出力约束,式(1.5)和式(1.6)分别为切负荷与 弃风量的约束,式(1.7)为每条走廊可架设线路的回数约束。
    Min:Σi,jcijnij+αΣhHΣi(ri,h+wi,h)---(1)]]>
    s.t.:S×Pij,h+Gh+Uh+Rh=Dh+Wh     (1.1)
    pij,h-βij(nij0+nij)(θi,h-θj,h)=0---(1.2)]]>
    |pij,h|0.8(nij0+nij)φ‾ij---(1.3)]]>
    0.7G‾GhG‾---(1.4)]]>
    0≤Rh≤Dh     (1.5)
    0≤Wh≤Uh     (1.6)
    0nijnij‾---(1.7)]]>
    nij为整数(1.8)
    i,j∈Ω     (1.9)
    其中:
    h--表示场景,H为场景总数,h=1,2,...,H;
    cij--支路i-j增加一条线路的费用(US$);
    nij--增加到支路i-j的线路回数;
    α--切负荷量与弃风的惩罚因子(US$/MW),本发明实施例中取10000;
    S--节点注入功率与支路有功潮流关联矩阵;
    Pij,h--场景h的支路有功潮流数组,元素记为pij,h(MW);
    Gh--场景h的火电机组有功出力数组,元素为gi,h(MW);
    Rh--场景h的切负荷量数组,元素为ri,h(MW);
    Dh--场景h的负荷预测值数组,元素为di,h(MW);
    βij--支路i-j的电纳;
    --支路i-j中原有的线路回数;
    θi,h-场景h中节点i的电压相角;
    --每条增加到支路i-j的线路的有功潮流上限(MW);
    --火电机组最大有功出力数组,元素为(MW);
    --支路i-j中可增加线路回数的最大值;
    Ω--在扩展规划中可添加线路的走廊的集合;
    Uh--场景h的风电场有功出力数组;
    Wh--场景h的弃风量数组,元素为wi,h(MW)。
    求解模型(1)的关键,是找到随机变量风电出力u和负荷d的极限场景。
    (2)基于田口直交表,形成风功率和负荷的极限场景。
    (2.1)选取随机变量风电出力u和负荷d的极限场景;其中风机出力的选取根据风机出力的实际情况及统计学意义;负荷的选取根据目前现有预测技术。
    为了更好地体现风机出力的随机性,本发明选取3个风机出力极限值,分别为0、均值uE、额定值uN。
    假设负荷误差服从正态分布,则其极限水平值取2个,分别为μ+σ和μ-σ,其中μ和σ分别为期望值和方差,σ取μ的5%。
    (2.2)根据随机变量风电出力u和负荷d的极限场景,形成田口直交表。
    假设某电网中,有Nu个风电接入节点,Nd个负荷节点。由(2.1)可知,风机出力有0、均值uE、额定值uN共3个水平值(水平值是指实际取值),负荷有μ+σ和μ-σ共2个水平值,则需要形成一个LH(2Nd×3Nu)的田口直交表,H为测试场景总数。
    (2.3)根据田口直交表,得到风机出力和负荷的所有极限场景的H个测试场景,将田口直交表中各变量的水平换成各自对应的水平值,将每一个测试场景中每个变量的水平值代入模型(1)中,得到H组确定性式子。至此,已经顺利将模型(1)转化为确定性模型。
    本发明中,田口直交表中各变量指风机出力和负荷,各变量的“水平”是指田口直交表中的数值,一般用数字1、2、3等表示,不是变量的实际值。各变量对应的“水平值”是指“水平”对应的值,也就是某变量的实际值,比如,某变量有2个水平,分别记为水平1和水平2,而该变量实际有2种取值,其值分别为20MW、30MW,那么,我们就可以用水平1代替水平值20MW,用水平2代替水平值30MW。确定性式子是不含有随机变量的式子,也就是说,式子里面的所有变量可以随时取到其约束范围之内的值。而风功率出力在没有变换之前就属于随机变量,因为如果需要它为某一个取值的时候,它不一定可以取到,原因是那个时刻天气情况可能没有风,没有风就没有风功率。
    在本发明实施例中,田口直交表包括:一个具有F个变量,B种水平的田口直交表表示为LH(BF),其中H为变量水平的组合数。LH(BF)的形式为一个H行F列的矩阵,变量的水平为矩阵中的元素值。例如,一个L4(23)的田口直交表如下所示:
    L4(23)=111122212221]]>
    L4(23)表示有3个变量,每个变量有2种水平,共有4种组合。由田口直交表L4(23)决定的测试场景如表1所示。
    表1田口直交表L4(23)决定的测试场景


    田口直交表具有如下特性:
    (a)对于每一列中的变量,每一种水平都出现H/B次。比如,表1,在L4(23)中,H=4,B=2,“1”和“2”在每一列中均出现两次。
    (b)任意两列,每两个变量水平的组合出现同样的次数。比如,L4(23)的任意两列中,两个变量水平的组合,例如组合“11”、“12”、“21”、“22”均出现一次。
    (c)由田口直交表决定的组合,均匀地分布在所有可能的空间里。L4(23)的组合为图2所示。
    (d)当田口直交表中任意两列发生变化或忽略某些列时,剩下的直交表仍然满足以上田口直交表的特性。
    (4)采用MINLP问题中的外逼近算法对H组确定性式子进行求解,得到的方案即为规划最终方案。
    一般的MINLP问题Z为式(2.1)所示。
    minZ=f(x,y)
    s.t.gk(x,y)≤0,k∈K     (2.1)
    (x,y)∈L
    其中,x为连续变量,y为整数变量,X为凸集,Y为整数点多面体集合,L=X∪Y,K为约束函数的指标集。
    根据式(2.1),可将模型(1)改写为式(3.1)-(3.4)。
    Σi,jcijnij+αΣhHΣi(ri,h+wi,h)---(3.1)]]>
    S×Pij,h+Gh+Uh+Rh=Dh+Wh-(S×Pij,h+Gh+Uh+Rh=Dh+Wh)pij,h-βij(nij0+nij)(θi,h-θj,h)-(pij,h-βij(nij0+nij)(θi,h-θj,h))pij,h-0.8(nij0+nij)φ‾ij-pij,h-0.8(nij0+nij)φ‾ijGh-G‾0.7G‾-GhRh-Dh-RhWh-Uh-Whnij-nij‾-nij0---(3.2)]]>
    X=[p,g,w,r,θ]     (3.3)
    Y=[n](3.4)
    根据式(2.1),可定义式(3.1)为式(2.1)中的f(x,y),式(3.2)为式(2.1)中的gk(x,y),式(3.3)为式(2.1)中的X,式(3.4)为式(2.1)中的Y,则可根据MINLP问题中的外逼近算法,对式(3.1)-(3.4)进行求解。
    引入变量u,将目标函数转化为不等式约束f(x,y)≤u,则式(2.1)变为式(2.2):
    minx,y.uZ=u]]>
    s.t.gk(x,y)≤0,k∈K     (2.2)
    f(x,y)≤u
    (x,y)∈L
    不等式f(x,y)≤u可改写为f(x,y)-u≤0,可将f(x,y)≤u合并到不等式约束中去,集合K变为K′,而变量u可表示为因此,式(2.2)可变为式(2.3):
    min{cxTx+cyTy}]]>
    s.t.gk(x,y)≤0,k∈K′     (2.3)
    (x,y)∈L
    令集合N={(x,y)|gk(x,y)≤0,k∈K′},则式(2.3)可变为式(2.4):
    min{cxTx+cyTy}---(2.4)]]>
    s.t.(x,y)∈L∩N
    N为凸函数所围成的可行域。
    假设(x,y)为问题(2.4)的任意点,则在该点处生成切平面函数满足(2.5)式:
    gk(x,y)+(∂gk∂x)(x,y)(x-x)+(∂gk∂y)(x,y)(y-y)gk(x,y)---(2.5)]]>
    记切平面函数lk(x,y)为等式(2.6):
    lk(x,y)=gk(x,y)+(∂gk∂x)(x,y)(x-x)+(∂gk∂y)(x,y)(y-y)gk(x,y),∀k∈K---(2.6)]]>
    以问题(2.7)的解(x0,y0)作为初始点,求解形如(2.4)的MINLP问题。
    min{cxTx+cyTy}---(2.7)]]>
    s.t.(x,y)∈L
    记迭代过程中求解的MILP问题为式(2.8):
    min{cxTx+cyTy}---(2.8)]]>
    s.t.(x,y)∈Pt
    其中Pt为线性约束集合,也即第t步利用切平面形成的凸多面体对凸非线性可行域N的近似。
    外逼近方法在求解MINLP问题过程中需要定义两个NLP子问题。
    定义1:在问题(2.1)中,若整数变量时,(2.1)有解,则(2.1)的MINLP问题可转化为(2.9)所示的NLP问题:
    minf(x,y‾)s.t.gk(x,y‾)0,k∈K;x∈X---(2.9)]]>
    定义2:在问题(2.1)中,若整数变量时,(2.1)无解,则(2.1)的MINLP问题可转化为(2.10)所示的NLP问题:
    min u
    s.t.gk(x,y‾)u,k∈K---(2.10)]]>
    x∈X,u∈R1
    外逼近方法的具体步骤如下:
    Step1.求解问题(2.7)得到初始点(x0,y0);
    Step2.令初始多面体P0=L;
    Step3.在点(x0,y0)处,若问题(2.9)有解,求解问题(2.9)得到若问题(2.9)无解,求解问题(2.10)得到解
    Step4.利用(2.5)式和(2.6)式生成函数{gk(x,y)≤0,k∈K}在当前点的切平面函数
    Step5.令初始切平面集合
    Step6.生成当前凸多面体集合Pt,其中Pt=Pt-1∩Lt-1,初始状态下t=1;
    Step7.求解MILP问题(2.8)的解(xt,yt);
    Step8.计算判断收敛准则gk(xt,yt)≤ε是否成立。若收敛准则成立,则转到Step12;若收敛准则不成立,则转到Step9;
    Step9.在点(xk,yk)处,若问题(2.9)有解,求解问题(2.9)得到若问题(2.9)无解,求解问题(2.10)得到解
    Step10.利用(2.5)式和(2.6)式生成函数{gk(x,y),k∈K}在当前点的切平面函数并令当前点切平面集合Lt={(x,y)|lkt(x,y)0,k∈K};]]>
    Step11.令t=t+1,转到step6;
    Step12.令(x*,y*)=(xt,yt),输出最优解(x*,y*)。
    本发明的优点和积极效果是:本发明立足于计及风功率的随机性,在 获取风功率出力概率特性的基础上,选择风功率出力的极限值,基于田口直交表,采用MINLP模型中的外逼近算法对所建模型进行求解,得到一种适用于求解大规模风电接入电力系统的电网规划研究方法,保证电力系统能够应对风电的随机性。
    为了更进一步的说明本发明实施例提供的电力系统电网规划方法,现结合附图及具体实例对本发明作进一步详细说明。
    实施步骤1:
    建立基于极限场景的含风电的电网规划模型,如模型(1)所示。
    实施步骤2:
    1)算例参数
    本发明以修正的Garver6节点系统为例。修正的Garver6节点系统的拓扑结构、节点参数和线路参数分别如图3、表2、表3所示。其中,节点3接入额定值uN为30MW、均值uE为20MW的风机。
    表2修正Garver6系统的火电机组出力及负荷数据(MW)
    节点123456额定火电机组出力300036000300负荷均值μ80240401602400
    表3修正Garver6系统的支路数据


    2)形成算例Garver6节点系统的田口直交表
    修正的Garver6节点系统中,1、2、3、4、5节点为负荷节点,3节点接入风机。负荷极限值分别为μ+σ和μ-σ,其中,和σ分别为期望和方差,σ取μ的5%。风机出力极限值分别为0、20MW、30MW,则该系统中,共6个变量,其中5个负荷变量有2个水平值,1个风机出力变量为3个水平值。因此,可从田口直交表数据库中选择L36(211×312),表示该田口直交表中有11个2水平的变量,12个3水平的变量。根据田口直交表的性质,忽略某些列不会影响田口直交表的性质,因此,修正的Garver6节点系统可选择如表4所示的田口直交表。
    表45个2水平、1个3水平的田口直交表


    3)将田口直交表的水平转换为各变量的水平值
    从田口直交表中形成测试场景的方式并不唯一,因为假设每个变量有两个相应的方式获取场景,田口直交表列中的“1”和“2”可分别定义为相应的随机变量的低和高的极限代表值,反之亦然。因此,对于一个具有Nd+Nu个变量的问题来说,获取相应的测试场景的方式就有2Nd+Nu种。尽管测试场景的方式不一致,但是得到的结果并不存在差异或是存在很小的差异。因此,在本发明中,负荷变量的“1”表示μ+σ,“2”表示μ-σ;风机出力的“1”表示0,“2”表示均值20MW,“3”表示额定值30MW。假设X1-X5分别表示负荷节点1-5,X6表示风机接入点节点3,由此,可将表5中的水平转换为各个变量的极限取值,如表5所示。
    表5修正的Garver6节点系统田口直交表水平值(MW)


    4)将不确定性模型(1)转化为确定性模型
    根据表5,模型(1)中的场景总数H=36,将每一种场景h对应的变量的水平值代入模型(1)的相应式子中。如对于节点功率平衡方程式(1.1),以h=1时节点3为例。根据表5可知,节点3在h=1时的负荷为42MW,风机出力为0MW,则式(1.1)中的第一行变为(1.1a):
    S×Pij,3+G3+0+R3-42+W3=0     (1.1a)
    依次类推,可将式(3.1)-(3.4)转化为确定性模型。
    实施步骤3:
    采用MINLP问题中的外逼近算法对转化后的式(3.1)-(3.4)进行求解,得到的架设方案如表6所示。
    表6修正的Garver6节点系统计算结果


    实施步骤4:验证模型的有效性
    按照前面的假设,负荷误差服从正态分布,且其标准差σ为期望值μ的5%。假设风速服从威布尔分布,风电场的输出功率主要取决于风速,不考虑发电机和传动机部分的特性以及风机之间的相互联系,风功率与风速的关系如式(4)所示。
    Pwind=0v<vci,v>vcoPNv3N-v3ci(v3-vci3)vcivvNPNvN<v<vco---(4)]]>
    其中,Pwind为风电场的输出功率,PN为风电机组的额定功率,v为风机轮毂高处的风速,vci、vco、vN分别为风机的切入风速、切出风速和额定风速。假设切入风速、切出风速和额定风速分别为3m/s、25m/s和11m/s。分别生成K个(取K=10000)各节点对应的负荷和风机出力数组样本值?;贛onte Carlo模拟仿真,记录每一组样本下,切负荷或者弃风的方案数目K1,定义可靠性百分数指标λ=K1/K,并把它作为衡量规划方案可靠程度的指标。计算结果如表6所示。从表6可看出,基于田口直交表的算法,在可靠性上能够达到电力系统100%的要求,具有很好的鲁棒性。此外,当不考虑线路剩余容量时,有些线路的剩余容量很低,甚至达到0,如3-5、4-6支路;而当考虑线路剩余容量时,这些线路的剩余平均容量都相对提高, 整个电网的线路平均剩余容量处于均和水平,给电力系统留有一定的裕度来适应运行环境的变化,由此验证了本发明的可行性。
    本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的?;し段е?。

    关于本文
    本文标题:一种适合于考虑风电随机特性的电力系统的电网规划方法.pdf
    链接地址://www.4mum.com.cn/p-6185625.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 金手指推荐湖北11选5 爱棋牌游戏中心官网 ag平台辅助软件 5码倍投方案 辽宁棋牌大全下载 二分时时彩是官方的吗 新时时保号法 3d走势图带连线 如何用别人钱 赚钱吗 时时彩五星独胆取胆表 抚洲865连连棋牌官网 彩票开奖助手下载 2020年最赚钱的职业排名 双色球开奖查询今天 北京十一选五开售时间 cfpl全明星跳跳乐视频