• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 14
    • 下载费用:30 金币  

    重庆时时彩5星走势图星: 飞机机号自动识别方法.pdf

    关 键 词:
    飞机 自动识别 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201410132517.6

    申请日:

    2014.04.03

    公开号:

    CN103971091A

    公开日:

    2014.08.06

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||实质审查的生效IPC(主分类):G06K 9/00申请日:20140403|||公开
    IPC分类号: G06K9/00; G06K9/66; G06N3/02 主分类号: G06K9/00
    申请人: 北京首都国际机场股份有限公司; 浙江宇视科技有限公司
    发明人: 刘冠; 陶明渊
    地址: 100621 北京市顺义区北京空港物流园区绿生路2号
    优先权:
    专利代理机构: 北京市盛峰律师事务所 11337 代理人: 席小东
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201410132517.6

    授权公告号:

    ||||||

    法律状态公告日:

    2017.04.26|||2014.09.03|||2014.08.06

    法律状态类型:

    授权|||实质审查的生效|||公开

    摘要

    本发明提供一种飞机机号自动识别方法,包括:采集飞机当前帧的机号原始图像;采用机号识别算法对其进行机号识别,获得当前机号信息;统计当前机场出现概率超过阈值的飞机机号信息;基于BP神经网络算法,计算飞机机号信息中任意两个字符之间的相似程度;将当前机号信息与统计得到的飞机机号信息进行精确匹配,通过相似程度判断统计得到的飞机机号信息中是否存在当前机号信息,如果不存在,通过模糊匹配算法进行匹配,如果存在,结合多帧检测结果对匹配到的机号信息进行修正。能够满足不同环境下的机号识别要求,具有机号检测准确率高的优点。

    权利要求书

    权利要求书
    1.  一种飞机机号自动识别方法,其特征在于,包括以下步骤:
    S1,通过图像采集设备采集飞机当前帧的机号原始图像;
    S2,采用机号识别算法对所述机号原始图像进行机号识别,获得当前机号信息;其中,所述当前机号信息由若干位字符组成;
    S3,统计当前机场出现概率超过阈值的飞机机号信息;基于BP神经网络算法,计算飞机机号信息中任意两个字符之间的相似程度;
    S4,将S2获得的当前机号信息与S3统计得到的飞机机号信息进行精确匹配,通过S3得到的相似程度判断统计得到的飞机机号信息中是否存在所述当前机号信息,如果不存在,则执行S5;如果存在,则直接执行S6;
    S5,对于S2得到的所述当前机号信息,计算各个字符的置信度,首先将当前机号信息中字符按置信度从低到高的顺序排列,依次记为字符P1、字符P2…字符Pm;
    首先将当前机号信息中的字符P1替换为模糊字符,得到模糊机号信息;然后,在S3得到的飞机机号信息中模糊查询所述模糊机号信息,如果查询到多个匹配结果,则选取与字符P1相似程度最高的匹配结果作为最终匹配得到的机号信息;如果未查询到相匹配的机号信息,则将当前机号信息中的字符P2替换为模糊字符,重复上述步骤,依此类推,直到查询到相匹配的机号信息;
    S6,统计之前N帧的机号识别结果,获得出现次数最多的机号信息,将其与S5匹配到的机号信息进行比较,如果一致,则S5匹配得到的机号信息即为最终识别到的机号信息;如果不一致,则根据机号出现概率,判断S5匹配到的机号信息为当前检测结果或统计结果,并更新前N帧机号检测数据统计信息。

    2.  根据权利要求1所述的飞机机号自动识别方法,其特征在于,S2具体包括以下步骤:
    S21,从所述机号原始图像中定位到机号图像;其中,所述机号图像为仅包含机号字符的图像;
    S22,对所述机号图像进行角度矫正,使所述机号图像中各个机号字符按从左到右的顺序平行排列,然后将角度矫正后的图像转换为灰度图,所述灰度图包括背景区域和字符区域两部分,调整所述灰度图的亮度,使所述背景区域和 所述字符区域之间的灰度差异达到阈值;然后,在所述灰度图的正下方建立直角坐标系,所述直角坐标系的X轴方向与机号字符排列方向相同;将所述灰度图向X轴进行投影,得到投影图;在所述投影图中查找宽度在一定范围内的固定个数的峰谷位置,该峰谷位置的中心即为相邻机号字符之间的分割线,进而将所述机号图像分割为固定个数的单个字符;
    S23,基于BP神经网络模型对分割出的单个字符进行字符识别,得到每一个字符的含义。

    3.  根据权利要求2所述的飞机机号自动识别方法,其特征在于,S21具体包括以下步骤:
    S211,数据库中存储若干个不同场景下的飞机视频序列;从所述飞机视频序列中提取m个训练样本,所述m个训练样本包括两类图像样本,分别为:机号图像正样本和机号图像负样本;
    S212,提取haar图像特征信息、hog图像特征信息和LBP图像特征信息,对于每一个图像特征信息,以m个训练样本作为输入,采用AdaBoost迭代算法均生成一个强分类器,由此得到三个强分类器;将三个强分类器串联在一起,得到最终的分级分类器;
    S213,以待检测的所述机号原始图像为输入,运算所述分级分类器,定位到所述机号图像。

    4.  根据权利要求3所述的飞机机号自动识别方法,其特征在于,S212中,对于任意一个图像特征信息,通过以下方法,生成一个对应的强分类器:
    S2121,输入样本集S={(x1,y1),(x2,y2),...,(xm,ym)},设迭代次数为T;其中,xi,为第i个训练样本的图像特征信息,yi为第i个训练样本的类别,如果第i个训练样本为机号图像正样本,则yi赋值-1;如果第i个训练样本为机号图像负样本,则yi赋值1;
    S2122,初始化分布d1(xi)=1/m,i=1,2,...,m;
    S2123,对每一个t=1,2,...,T,均执行下列步骤:
    1)依据加权样本空间{S,dt}选择弱分类器ht:x→{-1,+1};
    2)计算ht的加权训练误差ϵt=Σi=1mdt(xi)I(yi≠ht(xi));]]>
    其中,I表示一个函数,如果yi=ht(xi),则I为0;如果yi不等于ht(xi),则I为1;
    3)依据εt选定组合系数αt;
    4)更新分布dt+1(xi)=dt(xi)exp{-αtyiht(xi)}/Zt,其中为归一化因子;
    S2124,输出对应的强分类器HT(x)=sign(Σi=1Tαtht(x)/||α||1).]]>

    5.  根据权利要求2所述的飞机机号自动识别方法,其特征在于,S23具体包括以下步骤:
    S231,数据库中存储飞机图像的原始视频序列,从所述原始视频序列中提取n个字符样本;采用动态阈值二值化的方式将每一个字符样本转化为二值图;则n个二值图作为训练样本,分别计为a1,a2,...,an;
    S232,设置三层BP神经网络,该BP神经网络包括输入层i、隐含层j和输出层t;其中,所述输入层包含n个神经元,分别为X1、X2…Xn,所述隐含层包含p个神经元,所述输出层包含q个神经元,分别为Y1、Y2…Yq;
    S233,BP神经网络初始化:向各连接权Wij、Vjt及阈值θj,γt赋值[0,1]之间的随机值;其中,Wij为输入层与隐含层连接权;Vjt为隐含层与输出层连接权;θj为隐含层阈值;γt为输出层阈值;
    S234,给定输入a1,a2,...,an与期望输出Yk=[y1,y2,...,yq];
    S235,用输入模式Ak=[a1,a2,...,an]、连接权Wij和阈值θj计算隐含层各神经元的输入Sj,其中然后用Sj通过激活函数f(x)=1/(1+exp(-x)),计算隐含层各神经元的输出bj=f(Sj);
    S236,用隐含层的输出bj、连接权Vjt和阈值γt计算输出层各神经元的输入lt,然后用lt通过激活函数计算输出层各神经元的响应ct,其中
    S237,用希望输出模式Yk=[y1,y2,...,yq],网络实际输出ct计算输出层各神经元的校正误差dt=(yt-ct)·ct·(1-ct);用Vjt、dt、dj计算隐含层的校正误差ej=[Σt=1qdt·Vjt]·bj·(1-bj);]]>
    S238,用dt、dj、Vjt和γt计算下一次学习的隐含层和输出层之间的新连接权:
    Vjt(N+1)=Wij(N)+α·ej·ai
    θj(N+1)=θj(N)+α·ej;其中,α为学习速率;N为学习次数;ej为隐含层的校正误差;
    S239,返回至S234,选取下一个学习模式对提供给BP神经网络,指导全部模式训练完毕;
    S2310,更新学习次数,重新从m个学习模式对中随即选取一个模式对,返回至S234,指导网络全局误差函数E小于预先设定的限定值或学习次数大于预先设定的数值为止。

    说明书

    说明书飞机机号自动识别方法
    技术领域
    本发明属于车牌号识别技术领域,具体涉及一种飞机机号自动识别方法。
    背景技术
    随着国民经济快速发展,民用机场飞机起降频繁,机场运营部门需要在飞机滑行过程中,精确快速的识别飞机机号,从而有效提高机场整体运营尤其是跑道的管理效率,为全方位提升航班正点率提供技术保障。
    现有技术中,主要采用Otsu(最大类间方差法)二值化方法对飞机尾号图像进行处理,然后基于支持向量机最优参数对飞机尾号进行识别。
    该种方法存在对光照变化、飞机大小、复杂机身图案等干扰的鲁棒性差的不足,难以适应不同环境下的机号识别要求,因此,具有机号检测准确率低、实用价值有限的问题。
    发明内容
    针对现有技术存在的缺陷,本发明提供一种飞机机号自动识别方法,能够满足不同环境下的机号识别要求,具有机号检测准确率高的优点。
    本发明采用的技术方案如下:
    本发明提供一种飞机机号自动识别方法,包括以下步骤:
    S1,通过图像采集设备采集飞机当前帧的机号原始图像;
    S2,采用机号识别算法对所述机号原始图像进行机号识别,获得当前机号信息;其中,所述当前机号信息由若干位字符组成;
    S3,统计当前机场出现概率超过阈值的飞机机号信息;基于BP神经网络算法,计算飞机机号信息中任意两个字符之间的相似程度;
    S4,将S2获得的当前机号信息与S3统计得到的飞机机号信息进行精确匹配,通过S3得到的相似程度判断统计得到的飞机机号信息中是否存在所述当前机号信息,如果不存在,则执行S5;如果存在,则直接执行S6;
    S5,对于S2得到的所述当前机号信息,计算各个字符的置信度,首先将当前机号信息中字符按置信度从低到高的顺序排列,依次记为字符P1、字符P2… 字符Pm;
    首先将当前机号信息中的字符P1替换为模糊字符,得到模糊机号信息;然后,在S3得到的飞机机号信息中模糊查询所述模糊机号信息,如果查询到多个匹配结果,则选取与字符P1相似程度最高的匹配结果作为最终匹配得到的机号信息;如果未查询到相匹配的机号信息,则将当前机号信息中的字符P2替换为模糊字符,重复上述步骤,依此类推,直到查询到相匹配的机号信息;
    S6,统计之前N帧的机号识别结果,获得出现次数最多的机号信息,将其与S5匹配到的机号信息进行比较,如果一致,则S5匹配得到的机号信息即为最终识别到的机号信息;如果不一致,则根据机号出现概率,判断S5匹配到的机号信息为当前检测结果或统计结果,并更新前N帧机号检测数据统计信息。
    优选的,S2具体包括以下步骤:
    S21,从所述机号原始图像中定位到机号图像;其中,所述机号图像为仅包含机号字符的图像;
    S22,对所述机号图像进行角度矫正,使所述机号图像中各个机号字符按从左到右的顺序平行排列,然后将角度矫正后的图像转换为灰度图,所述灰度图包括背景区域和字符区域两部分,调整所述灰度图的亮度,使所述背景区域和所述字符区域之间的灰度差异达到阈值;然后,在所述灰度图的正下方建立直角坐标系,所述直角坐标系的X轴方向与机号字符排列方向相同;将所述灰度图向X轴进行投影,得到投影图;在所述投影图中查找宽度在一定范围内的固定个数的峰谷位置,该峰谷位置的中心即为相邻机号字符之间的分割线,进而将所述机号图像分割为固定个数的单个字符;
    S23,基于BP神经网络模型对分割出的单个字符进行字符识别,得到每一个字符的含义。
    优选的,S21具体包括以下步骤:
    S211,数据库中存储若干个不同场景下的飞机视频序列;从所述飞机视频序列中提取m个训练样本,所述m个训练样本包括两类图像样本,分别为:机号图像正样本和机号图像负样本;
    S212,提取haar图像特征信息、hog图像特征信息和LBP图像特征信息, 对于每一个图像特征信息,以m个训练样本作为输入,采用AdaBoost迭代算法均生成一个强分类器,由此得到三个强分类器;将三个强分类器串联在一起,得到最终的分级分类器;
    S213,以待检测的所述机号原始图像为输入,运算所述分级分类器,定位到所述机号图像。
    优选的,S212中,对于任意一个图像特征信息,通过以下方法,生成一个对应的强分类器:
    S2121,输入样本集S={(x1,y1),(x2,y2),...,(xm,ym)},设迭代次数为T;其中,xi,为第i个训练样本的图像特征信息,yi为第i个训练样本的类别,如果第i个训练样本为机号图像正样本,则yi赋值-1;如果第i个训练样本为机号图像负样本,则yi赋值1;
    S2122,初始化分布d1(xi)=1/m,i=1,2,...,m;
    S2123,对每一个t=1,2,...,T,均执行下列步骤:
    1)依据加权样本空间{S,dt}选择弱分类器ht:x→{-1,+1};
    2)计算ht的加权训练误差其中,I表示一个函数,如果yi=ht(xi),则I为0;如果yi不等于ht(xi),则I为1;
    3)依据εt选定组合系数αt;
    4)更新分布dt+1(xi)=dt(xi)exp{-αtyiht(xi)}/Zt,其中为归一化因子;
    S2124,输出对应的强分类器HT(x)=sign(Σi=1Tαtht(x)/||α||1).]]>
    优选的,S23具体包括以下步骤:
    S231,数据库中存储飞机图像的原始视频序列,从所述原始视频序列中提取n个字符样本;采用动态阈值二值化的方式将每一个字符样本转化为二值图;则n个二值图作为训练样本,分别计为a1,a2,...,an;
    S232,设置三层BP神经网络,该BP神经网络包括输入层i、隐含层j和输出层t;其中,所述输入层包含n个神经元,分别为X1、X2…Xn,所述隐含层包含p个神经元,所述输出层包含q个神经元,分别为Y1、Y2…Yq;
    S233,BP神经网络初始化:向各连接权Wij、Vjt及阈值θj,γt赋值[0,1]之间 的随机值;其中,Wij为输入层与隐含层连接权;Vjt为隐含层与输出层连接权;θj为隐含层阈值;γt为输出层阈值;
    S234,给定输入a1,a2,...,an与期望输出Yk=[y1,y2,...,yq];
    S235,用输入模式Ak=[a1,a2,...,an]、连接权Wij和阈值θj计算隐含层各神经元的输入Sj,其中然后用Sj通过激活函数f(x)=1/(1+exp(-x)),计算隐含层各神经元的输出bj=f(Sj);
    S236,用隐含层的输出bj、连接权Vjt和阈值γt计算输出层各神经元的输入lt,然后用lt通过激活函数计算输出层各神经元的响应ct,其中
    S237,用希望输出模式Yk=[y1,y2,...,yq],网络实际输出ct计算输出层各神经元的校正误差dt=(yt-ct)·ct·(1-ct);用Vjt、dt、dj计算隐含层的校正误差ej=[Σt=1qdt·Vjt]·bj·(1-bj);]]>
    S238,用dt、dj、Vjt和γt计算下一次学习的隐含层和输出层之间的新连接权:
    Vjt(N+1)=Wij(N)+α·ej·ai
    θj(N+1)=θj(N)+α·ej;其中,α为学习速率;N为学习次数;ej为隐含层的校正误差;
    S239,返回至S234,选取下一个学习模式对提供给BP神经网络,指导全部模式训练完毕;
    S2310,更新学习次数,重新从m个学习模式对中随即选取一个模式对,返回至S234,指导网络全局误差函数E小于预先设定的限定值或学习次数大于预先设定的数值为止。
    本发明提供的飞机机号自动识别方法,具有以下优点:
    (1)通过本发明提供的机号识别算法,包括机号定位、字符分割和字符识别过程,能够准确的识别当前帧的飞机机号信息;
    (2)结合多帧检测结果和飞机机号统计信息模糊匹配算法,对当前帧的飞机机号信息进行进一步修正,能够进一步提高当前帧机号识别准确率。
    (3)基于检测结果对机号识别算法进行自适应学习,根据现场环境进一步 提高机号识别的整体检测准确率。
    (4)因此,能够满足不同环境下的机号识别要求,具有机号检测准确率高的优点。
    附图说明
    图1为本发明提供的飞机机号自动识别方法的流程示意图;
    图2为本发明提供的机号图像样本示意图;
    图3为本发明提供的字符分割的示意图;
    图4为本发明提供的三层BP神经网络的示意图。
    具体实施方式
    以下结合附图对本发明进行详细说明:
    如图1所示,本发明提供一种飞机机号自动识别方法,包括以下步骤:
    S1,通过图像采集设备采集飞机当前帧的机号原始图像;
    本步骤中,在飞机滑行过程中,可以采用高分辨率摄像机拍摄飞机当前帧的机号原始图像。
    S2,采用机号识别算法对所述机号原始图像进行机号识别,获得当前机号信息;其中,所述当前机号信息由若干位字符组成;
    本步骤中,对机号原始图像进行机号识别,主要包括机号定位、字符分割、和字符识别三部分。以下详细介绍这三部分的具体技术方案:
    (一)机号定位
    机号定位是指从一幅机号原始图像中通过某种算法确定飞机机号图像的准确位置,其准确程度直接关系到其后的识别效果。其中,机号图像为仅包含机号字符的图像。具体包括以下步骤:
    S211,数据库中存储若干个不同场景下的飞机视频序列;从所述飞机视频序列中提取m个训练样本,所述m个训练样本包括两类图像样本,分别为:机号图像正样本和机号图像负样本;机号图像正样本指包含完整机号信息的样本,如图2中的A、B、C为机号图像正样本;机号图像负样本指包含非完整机号信息的样本,如图2中的D、E为机号图像负样本。
    S212,提取haar图像特征信息、hog图像特征信息和LBP图像特征信息, 对于每一个图像特征信息,以m个训练样本作为输入,采用AdaBoost迭代算法均生成一个强分类器,由此得到三个强分类器;将三个强分类器串联在一起,得到最终的分级分类器;
    其中,haar图像特征信息分为三类:边缘特征、线性特征、中心特征和对角线特征。Hog(Histogram of Oriented Gradient)图像特征信息指梯度直方图特征,是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子,通过计算和统计图像局部区域的梯度方向直方图构成特征。LBP(Local BinaryPatterns,局部二值模式)图像特征信息为一种有效的纹理描述算子,度量和提取图像局部的纹理信息,对光照具有不变性。AdaBoost是一种迭代算法,其核心思想是针对同一个训练集训练不同的弱分类器,然后将弱分类器集合起来,构成一个更强的强分类器。
    本步骤中,对于任意一个图像特征信息,通过以下方法,生成一个对应的强分类器:
    S2121,输入样本集S={(x1,y1),(x2,y2),...,(xm,ym)},设迭代次数为T;其中,xi,为第i个训练样本的图像特征信息,yi为第i个训练样本的类别,如果第i个训练样本为机号图像正样本,则yi赋值-1;如果第i个训练样本为机号图像负样本,则yi赋值1;
    S2122,初始化分布d1(xi)=1/m,i=1,2,...,m;
    S2123,对每一个t=1,2,...,T,均执行下列步骤:
    1)依据加权样本空间{S,dt}选择弱分类器ht:x→{-1,+1};
    2)计算ht的加权训练误差其中,I表示一个函数,如果yi=ht(xi),则I为0;如果yi不等于ht(xi),则I为1;
    3)依据εt选定组合系数αt;
    4)更新分布dt+1(xi)=dt(xi)exp{-αtyiht(xi)}/Zt,其中为归一化因子;
    S2124,输出对应的强分类器HT(x)=sign(Σi=1Tαtht(x)/||α||1).]]>
    S213,以待检测的所述机号原始图像为输入,运算所述分级分类器,定位到所述机号图像。
    采用上述方法,通过分级分类器,能准确的定位到机号的绝对坐标,减少了机号识别的误检率,同时提升检测性能。
    (二)字符分割
    对所述机号图像进行角度矫正,使所述机号图像中各个机号字符按从左到右的顺序平行排列,然后将角度矫正后的图像转换为灰度图,所述灰度图包括背景区域和字符区域两部分,调整所述灰度图的亮度,使所述背景区域和所述字符区域之间的灰度差异达到阈值;然后,在所述灰度图的正下方建立直角坐标系,所述直角坐标系的X轴方向与机号字符排列方向相同;将所述灰度图向X轴进行投影,得到投影图;在所述投影图中查找宽度在一定范围内的固定个数的峰谷位置,该峰谷位置的中心即为相邻机号字符之间的分割线,进而将所述机号图像分割为固定个数的单个字符;
    具体的,对于定位到的机号图像,由两部分组成:背景区域和字符区域,在转换为灰度图后,背景区域和字符区域存在一定的灰度差异,通过调整整个机号图像的亮度等信息,能够使背景区域和字符区域之间的灰度差异更为明显。在将其进行X轴方向投影时,所得到的投影图为灰度图上对应区域所有像素叠加的结果,由于飞机机号包含的字符数量为固定值,并且,相邻字符之间的间距均相同,因此,在进行X轴方向投影时,相邻字符之间的背景区域在投影图上为宽度相同的峰谷,通过在投影图上查找该峰谷,即可对飞机机号进行字符分割。
    如图3所示,为字符分割的示意图,在该图中,飞机机号共包含6个字符,在投影图中存在5个宽度相同的峰谷,分别为峰谷A、峰谷B、峰谷C、峰谷D和峰谷E,从而得到分割线1、分割线2、分割线3、分割线4和分割线5。
    (三)字符识别
    本发明中,采用基于BP神经网络模型对分割出的单个字符进行字符识别,得到每一个字符的含义,具体包括以下步骤:
    S231,数据库中存储飞机图像的原始视频序列,从所述原始视频序列中提取n个字符样本;采用动态阈值二值化的方式将每一个字符样本转化为二值图;则n个二值图作为训练样本,分别计为a1,a2,...,an;
    S232,如图4所示,设置三层BP神经网络,该BP神经网络包括输入层i、隐含层j和输出层t;其中,所述输入层包含n个神经元,分别为X1、X2…Xn,所述隐含层包含p个神经元,所述输出层包含q个神经元,分别为Y1、Y2…Yq;
    S233,BP神经网络初始化:向各连接权Wij、Vjt及阈值θj,γt赋值[0,1]之间的随机值;其中,Wij为输入层与隐含层连接权;Vjt为隐含层与输出层连接权;θj为隐含层阈值;γt为输出层阈值;
    S234,给定输入a1,a2,...,an与期望输出Yk=[y1,y2,...,yq];
    S235,用输入模式Ak=[a1,a2,...,an]、连接权Wij和阈值θj计算隐含层各神经元的输入Sj,其中然后用Sj通过激活函数f(x)=1/(1+exp(-x)),计算隐含层各神经元的输出bj=f(Sj);
    S236,用隐含层的输出bj、连接权Vjt和阈值γt计算输出层各神经元的输入lt,然后用lt通过激活函数计算输出层各神经元的响应ct,其中
    S237,用希望输出模式Yk=[y1,y2,...,yq],网络实际输出ct计算输出层各神经元的校正误差dt=(yt-ct)·ct·(1-ct);用Vjt、dt、dj计算隐含层的校正误差ej=[Σt=1qdt·Vjt]·bj·(1-bj);]]>
    S238,用dt、dj、Vjt和γt计算下一次学习的隐含层和输出层之间的新连接权:
    Vjt(N+1)=Wij(N)+α·ej·ai
    θj(N+1)=θj(N)+α·ej;其中,α为学习速率;N为学习次数;ej为隐含层的校正误差;
    S238,返回至S234,选取下一个学习模式对提供给BP神经网络,指导全部模式训练完毕;
    S239,更新学习次数,重新从m个学习模式对中随即选取一个模式对,返回至S234,指导网络全局误差函数E小于预先设定的限定值或学习次数大于预先设定的数值为止。
    通过步骤S1和S2,识别出当前帧的飞机机号信息,为提高机号识别准确率,本发明中,结合多帧检测结果和飞机机号统计信息模糊匹配算法,对当前帧的 飞机机号信息进行进一步识别,具体为:
    S3,统计当前机场出现概率超过阈值的飞机机号信息;基于BP神经网络算法,计算飞机机号信息中任意两个字符之间的相似程度;
    例如,对于字符0,字符0和字符8的相似程度为95%,字符0和字符6的相似程度为90%,字符0和字符5的相似程度为80%,依此类推。
    S4,将S2获得的当前机号信息与S3统计得到的飞机机号信息进行精确匹配,通过S3得到的相似程度判断统计得到的飞机机号信息中是否存在所述当前机号信息,如果不存在,则执行S5;如果存在,则直接执行S6;
    S5,对于S2得到的所述当前机号信息,计算各个字符的置信度,首先将当前机号信息中字符按置信度从低到高的顺序排列,依次记为字符P1、字符P2…字符Pm;本步骤中,字符的置信度为归一化到[0-100]的数字。
    首先将当前机号信息中的字符P1替换为模糊字符,得到模糊机号信息;然后,在S3得到的飞机机号信息中模糊查询所述模糊机号信息,如果查询到多个匹配结果,则选取与字符P1相似程度最高的匹配结果作为最终匹配得到的机号信息;如果未查询到相匹配的机号信息,则将当前机号信息中的字符P2替换为模糊字符,重复上述步骤,依此类推,直到查询到相匹配的机号信息;
    例如,通过步骤S1和S2,识别到的当前机号信息为B-6510;其中,字符6置信度为85,字符5置信度为80,字符1置信度为90,字符0置信度为75。则首先将字符0替换为模数字符,所得到的模糊机号信息为B-651%;然后,在飞机机号统计信息中模糊查询B-651%,如查询到多个匹配结果,包括:B-6518、B-6515、B-6516;则根据查询的模糊字符和其他字符的相似程度,找到相似程度最大的匹配结果输出,即:由于字符8和字符0的相似程度最高,则得出相匹配的机号为B-6518;如未找到相匹配的结果,则将字符5替换为模数字符,模糊查询B-6%10,依此类推,直到查询到合适的匹配结果为止。
    S6,统计之前N帧的机号识别结果,获得出现次数最多的机号信息,将其与S5匹配到的机号信息进行比较,如果一致,则S5匹配得到的机号信息即为最终识别到的机号信息;如果不一致,则根据机号出现概率,判断S5匹配到的机号信息为当前检测结果或统计结果,并更新前N帧机号检测数据统计信息。
    在通过上述步骤检测出飞机机号信息后,为提高整体检测准确率,可基于检测结果对机号识别算法进行自适应学习,即:将当前帧的检测结果作为S232步骤中三层BP神经网络的训练样本,同步进行BP神经网络的自适应学习,当自适应学习过程满足一定条件时,允许机号识别算法在进行字符识别时替换原有的字符神经网络,根据现场环境进一步提高机号识别的准确性。
    综上所述,本发明提供的飞机机号自动识别方法,具有以下优点:
    (1)通过本发明提供的机号识别算法,包括机号定位、字符分割和字符识别过程,能够准确的识别当前帧的飞机机号信息;
    (2)结合多帧检测结果和飞机机号统计信息模糊匹配算法,对当前帧的飞机机号信息进行进一步修正,能够进一步提高当前帧机号识别准确率。
    (3)基于检测结果对机号识别算法进行自适应学习,根据现场环境进一步提高机号识别的整体检测准确率。
    (4)因此,能够满足不同环境下的机号识别要求,具有机号检测准确率高的优点。
    以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的?;し段?。

    关于本文
    本文标题:飞机机号自动识别方法.pdf
    链接地址://www.4mum.com.cn/p-6143914.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 安徽时时快三 利用规律 3d稳赚不赔绝招 今天内蒙古时时 玩幸运飞挺稳赚技巧 众赢计划软件下载 944cc天下彩图文资讯 皇家彩世界pk10app 重庆时时走势图分析 天津时时不一样开奖 双色球84开奖结果 pk10长期稳赚的方法 看nba比赛投注量的网站 11选5前一稳赚方法 模拟投注app 北京pk赛车下载安装