• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 10
    • 下载费用:30 金币  

    重庆时时彩定码9个数: 一种对医疗影像检查量预测的混合优化方法.pdf

    摘要
    申请专利号:

    重庆时时彩单双窍门 www.4mum.com.cn CN201410171208.X

    申请日:

    2014.04.25

    公开号:

    CN103955764A

    公开日:

    2014.07.30

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||专利申请权的转移IPC(主分类):G06Q 10/04登记生效日:20161115变更事项:申请人变更前权利人:杭州电子科技大学变更后权利人:杭州电子科技大学变更事项:地址变更前权利人:310018 浙江省杭州市下沙高教园区2号大街变更后权利人:310018 浙江省杭州市下沙高教园区2号大街变更事项:申请人变更后权利人:浙江莱达信息技术有限公司|||实质审查的生效IPC(主分类):G06Q 10/04申请日:20140425|||公开
    IPC分类号: G06Q10/04(2012.01)I; G06Q50/22(2012.01)I 主分类号: G06Q10/04
    申请人: 杭州电子科技大学
    发明人: 徐哲; 倪杭建; 何必仕; 何炜
    地址: 310018 浙江省杭州市下沙高教园区2号大街
    优先权:
    专利代理机构: 杭州求是专利事务所有限公司 33200 代理人: 杜军
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201410171208.X

    授权公告号:

    |||||||||

    法律状态公告日:

    2017.01.18|||2016.12.07|||2014.08.27|||2014.07.30

    法律状态类型:

    授权|||专利申请权、专利权的转移|||实质审查的生效|||公开

    摘要

    本发明公开了一种对医疗影像检查量预测的混合优化方法。本发明在灰色GM(1,1)预测模型的基础之上,使用马尔可夫链来形成灰色-马尔可夫模型,运用马尔可夫链模型能很好的解决灰色模型对于医疗影像数据波动大预测不准的缺点;同时运用蒙特卡洛模型预测所需要的医疗影像数据值,最后根据这两种模型所预测的医疗影像数据来做最后的混合预测,从而达到需要的优化预测要求。本发明能够很大程度的提高预测精度以及拟合度,弥补了灰色预测的局限,从而对于医疗影像数据的检查量的预测能更加的精准,对于医疗机构可以有足够的证据来进行安排。

    权利要求书

    权利要求书
    1.  一种对医疗影像检查量预测的混合优化方法,其特征在于该方法包括以下步骤:
    步骤A:灰色-马尔可夫链模型的建立,具体是:
    (1)在建立灰色-马尔可夫链模型之前,为了保证灰色GM(1,1)模型的预测精度,需要通过级比检验来判定原始医疗影像数据是否适合GM(1,1)建模;该步骤主要是要求医疗影像原始数据必须在级比范围内,对于级比检验合格的序列,直接用于GM(1,1)模型的构建;对于级比检验不合格的序列,通过对数变换、平移变换来提高医疗影像原始数据序列的光滑度,然后对处理后的医疗影像数据序列进行GM(1,1)建模,建模完成后再对预测曲线进行逆变换;
    (2)建立灰色GM(1,1)模型,具体是:对于给定的医疗影像原始数据序列设为X(0)(t)=(X(0)(1),X(0)(2),X(0)(3),......,X(0)(n)),t=1,2,......,n,运用灰色系统理论,建立GM(1,1)模型为:
    X(1)(t+1)=[X(0)(1)-ba]e-at+b/a---(1)]]>
    X(0)(t+1)=X(1)(t+1)-X(1)(t)=(1-ea)[X(1)(1)-b/a]e-at   (2)
    式中a为常系数,b为对系统的定常输入,X(0)(t+1)曲线即为灰色GM(1,1)对医疗影像数据的预测曲线;
    (3)在灰色模型的基础上建立马尔可夫链模型;该模型主要包括三个步骤,依次为状态的划分,计算转移概率并建立转移概率矩阵,预测状态转移,最后计算出灰色-马尔可夫链模型对医疗影像检查量的预测值;
    步骤B:蒙特卡洛模型的建立,假设变量
    Y=f(X)   (3)
    式中X为服从某一概率分布的随机变量,f(X)是一个未知或非常复杂的函数式,用蒙特卡洛模型法就是通过直接或间接抽样求出每一随机自变量X,然后带入(3)式求出函数值Y,这样反复地独立模拟计算多次,便可得到函数Y的一批抽样数据Y1,Y2,Y3,......,Yn;当独立模拟次数很大的时候,就可以由此来确 定函数Y的概率特征;并用样本均值
    Y‾=1NΣi=1nYi---(4)]]>
    来作为函数Y的期望值;并且使用样本标准差
    S2=1NΣi=1n(Yi-Y‾)2---(5)]]>
    作为的统计精度;使用蒙特卡洛模型需要在计算机上进行大量的运行模拟,并按式(4)计算出的影像数据每年的期望值就是对应的预测量;
    步骤C:将灰色-马尔可夫链模型与蒙特卡洛模型两种方法进行混合,具体是:采用两种模型混合主要是根据两个模型分别预测出来的影像检查量的值进行计算机拟合,在经过大量的拟合计算后得到两种模型的加权系数P、L;其中P为灰色-马尔可夫链模型的权重系数,L为蒙特卡洛模型的权重系数;经过权重分配后所预测出来的值就是最终预测的数据。

    说明书

    说明书一种对医疗影像检查量预测的混合优化方法
    技术领域
    本发明属于数据挖掘技术领域,涉及一种医疗影像检查量预测优化的方法。
    背景技术
    随着医院信息化的发展,许多医院相继建立了专业的医疗影像信息系统,在多年的使用中积累了大量的业务数据。人们可以利用其中的患者、检查等历史数据进行检查量的预测,以便提前规划决策。
    目前,已有学者对医疗影像检查量预测采用灰色GM(1,1)进行研究,灰色预测模型因不需要考虑复杂因素影响,所需原始数据少,预测精度高,操作简便等特点,很适用于检查量的预测研究。但该预测方法仍不能很好地的应对实际中出现的问题?;勾嬖谝韵录傅悴蛔阒Γ?
    (1)如果数据离散程度很大,预测精度、拟合度会不高;
    (2)灰色预测不适合对数据波动性较大的数据序列进行预测;
    (3)灰色预测对于短期预测效果比较好,但对于长期预测存在问题。
    发明内容
    本发明拟解决预测精度不高,降低数据波动带来的不稳定影响。
    本发明为了克服灰色预测方法中的不足之处,在灰色GM(1,1)预测模型的基础之上,使用马尔可夫链来形成灰色-马尔可夫模型,运用马尔可夫链模型能很好的解决灰色模型对于医疗影像数据波动大预测不准的缺点;同时运用蒙特卡洛模型预测所需要的医疗影像数据值,最后根据这两种模型所预测的医疗影像数据来做最后的混合预测,从而达到需要的优化预测要求。
    本发明主要通过以下几个步骤来实现:
    步骤A:灰色-马尔可夫链模型的建立。建立该模型需要按几个步骤来实现,具体的细分为:
    (1)在建立灰色-马尔可夫链模型之前,为了保证灰色GM(1,1)模型的预测精度,需要通过级比检验来判定原始医疗影像数据是否适合GM(1,1)建模。该步骤主要是要求医疗影像原始数据必须在级比范围内,对于级比检验合格的序列,可以直接用于GM(1,1)模型的构建;而对于级比检验不合格的序 列,可以通过对数变换、平移变换等预处理方式来提高医疗影像原始数据序列的光滑度,然后对处理后的医疗影像数据序列进行GM(1,1)建模,建模完成后再对预测曲线进行逆变换即可。
    (2)建立灰色GM(1,1)模型。对于给定的医疗影像原始数据序列设为X(0)(t)=(X(0)(1),X(0)(2),X(0)(3),......,X(0)(n))(t=1,2,......,n),运用灰色系统理论,建立GM(1,1)模型为
    X(1)(t+1)=[X(0)(1)-ba]e-at+b/a---(1)]]>
    X(0)(t+1)=X(1)(t+1)-X(1)(t)=(1-ea)[X(1)(1)-b/a]e-at   (2)
    式中a为常系数,b为对系统的定常输入。X(0)(t+1)曲线即为灰色GM(1,1)对医疗影像数据的预测曲线。
    (3)在灰色模型的基础上建立马尔可夫链模型。该模型主要包括三个步骤,依次为状态的划分,计算转移概率并建立转移概率矩阵,预测状态转移,最后计算出灰色-马尔可夫链模型对医疗影像检查量的预测值。
    步骤B:蒙特卡洛模型的建立。蒙特卡洛原理较简单,假设变量
    Y=f(X)   (3)
    式中X为服从某一概率分布的随机变量,f(X)是一个未知或非常复杂的函数式,用蒙特卡洛模型法就是通过直接或间接抽样求出每一随机自变量X,然后带入(3)式求出函数值Y,这样反复地独立模拟计算多次,便可得到函数Y的一批抽样数据Y1,Y2,Y3,......,Yn。当独立模拟次数很大的时候,就可以由此来确定函数Y的概率特征。并用样本均值
    Y‾=1NΣi=1nYi---(4)]]>
    来作为函数Y的期望值。并且可以使用样本标准差
    S2=1NΣi=1n(Yi-Y‾)2---(5)]]>
    作为的统计精度。使用蒙特卡洛模型需要在计算机上进行大量的运行模拟,并按式(4)计算出的影像数据每年的期望值就是对应的预测量。
    步骤C:将灰色-马尔可夫链模型与蒙特卡洛模型两种方法进行混合。采用两种模型混合主要是根据两个模型分别预测出来的影像检查量的值进行计算机拟合,在经过大量的拟合计算后可以得到两种模型的加权系数P、L(其中P为灰色-马尔可夫链模型的权重系数,L为蒙特卡洛模型的权重系数)。经过权重分配后所预测出来的值就是最终预测的数据。
    本发明的有益效果:能够很好的解决灰色模型对于离散程度大、波动性强的数据预测准确性低的情况,加入马尔可夫链模型能降低数据预测的不确定性,同时还能揭示出系统受各种复杂因素影响的随机性。与蒙特卡洛模型相结合后,能够很大程度的提高预测精度以及拟合度。这三种模型的相互运用,弥补了灰色预测的局限,从而对于医疗影像数据的检查量的预测能更加的精准,对于医疗机构可以有足够的证据来进行安排。
    附图说明
    图1为该发明的整体框架图;
    图2为灰色-马尔可夫链模型的流程图;
    图3为蒙特卡洛模型的流程图。
    具体实施方式
    以下结合附图对本发明作进一步说明。
    本发明的主要原理框架图如图1所示,对医疗影像数据集首先分别采用两种模型来建立,通过灰色-马尔可夫链模型来对医疗影像数据进行预测,主要是为了克服灰色预测方法中的不足之处,在灰色GM(1,1)预测模型的基础之上,运用马尔可夫链模型能很好的解决灰色模型数据波动大预测不准的缺点;同时运用蒙特卡洛模型预测,得到相应的医疗影像数据检查量的预测值。最后根据这两种模型所预测的数据来做最后的混合预测,通过计算机拟合得到两种模型各自的权重,最终得到预测值,从而达到需要的优化预测要求。
    A步骤:其中灰色-马尔可夫链模型和蒙特卡洛模型可以分别加以具体的实施步骤。如图2所示的是灰色-马尔可夫链模型的流程图。具体步骤为:
    在建立灰色-马尔可夫链模型之前,为了保证灰色GM(1,1)模型的预测精度,需要通过级比检验来判定医疗影像检查量原始数据是否适合GM(1,1)建模。设X(0)(t)=(X(0)(1),X(0)(2),X(0)(3),......,X(0)(n))为原始非负数据序列,σ(0)为X(0)的级比,即
    σ(0)(k)=x(0)(k-1)x(0)(k)---(1)]]>
    进而得到医疗影像原始数据级比序列:σ(0)=(σ(0)(2),σ(0)(3),......,σ(0)(n)),
    要求医疗影像原始数据序列必须在级比范围内,满足:
    σ(0)(k)∈{e(-2n+1),e(2n+1)}---(2)]]>
    对于级比检验合格的医疗影像检查量数据序列,可以直接用于GM(1,1)模型的构建;对于级比检验不合格的医疗影像检查量数据序列,可以通过对数变换、平移变换等预处理方式来提高医疗影像检查量原始数据序列的光滑度。然后在进行灰色GM(1,1)建模,完成建模后对预测曲线进行逆变换即可。
    (2)建立灰色GM(1,1)模型。对于给定的原始数据序列X(0)(t)=(X(0)(1),X(0)(2),X(0)(3),......,X(0)(n))(t=1,2,......,n),做一阶累加生成新的医疗影像检查量数据序列X(1)=(x(1)(1),x(1)(2),......,x(1)(n))。
    其中建立灰色GM(1,1)模型的微分方程:
    dx(1)dt+ax(1)=b---(3)]]>
    式中a为常系数,b为对系统的定常输入。运用最小二乘法原理,求解(3)式中a和b:
    (a,b)T=(BTB)-1BTQ   (4)
    其中,B=-12(x(1)(1)+x(1)(2))1-12(x(1)+x(1)(3))1······-12(x(1)(n-1)+x(1)(n))1,Q=x(0)(2)x(0)(3)···x(0)(n).]]>
    根据公式(3)和(4),得系统时间响应方程:
    X(1)(t+1)=[X(0)(1)-ba]e-at+b/a---(5)]]>
    并运用累减还原得
    X(0)(t+1)=X(1)(t+1)-X(1)(t)=(1-ea)[X(1)(1)-b/a]e-at   (6)
    取y(0)(t)=X(0)(t+1),t=(1,2,.....n)   (7)
    则y(0)(t)为GM(1,1)模型在t时刻的医疗影像检查量原始数据预测值。
    (3)建立马尔可夫链模型。首先状态划分。状态划分就是指对医疗影像检查量原始数据序列的分布区间进行划分,分别用E1,E2,……,En表示。
    Ei=[E1i,E2i]
    E1i=y(0)(t)+αi
    E2i=y(0)(t)+βi
    其中,αi和βi的值可以根据预测对象的性质、医疗影像检查量原始数据的数量,结合经验来赋值。
    (4)转移概率的计算和状态转移矩阵的建立。根据对医疗影像检查量数据序列的状态划分,称数据序列由状态Ei经过m步转移到Ej的概率为m步转移概率,记为则有
    pij(k)=mij(k)Mi---(8)]]>
    式中为状态Ei经过K步转移到状态Ej的次数;Mi为状态Ei出现的次数。根据状态转移的概率,可以写出状态K步转移概率矩阵:
    p(k)=p11(k)p12(k)···p1n(k)p21(k)p22(k)···p2n(k)············pn1(k)pn2(k)···pnn(k)---(9)]]>
    该矩阵称为马尔可夫链的K步转移矩阵。
    (5)预测值的计算。由近及远的选择距离预测时刻(t=n)最近的K个时刻 n-1,…,n-k,对应转移步数分别为1,2,3,…,K步。在对应的转移矩阵中,提取对应的行向量整合成新的状态转移概率矩阵,则列向量之和最大值所对应的状态就是最优可能的转移状态,最后预测值取状态区间的中值。
    y(0)(t)=E1i+E2i2---(10)]]>
    B步骤:如图3所示为蒙特卡洛模型的具体实施步骤。蒙特卡洛原理较简单,假设变量
    Y=f(X)   (11)
    式中X为服从某一概率分布的随机变量,f(X)是一个未知或非常复杂的函数式,用蒙特卡洛模型法就是通过直接或间接抽样求出每一随机自变量X,然后带入(3)式求出函数值Y,这样反复地独立模拟计算多次,便可得到函数Y的一批抽样数据Y1,Y2,Y3,……,Yn。当独立模拟次数很大的时候,就可以由此来确定函数Y的概率特征。并用样本均值:
    Y‾=1NΣi=1nYi---(12)]]>
    来作为函数Y的期望值。并且可以使用样本标准差:
    S2=1NΣi=1n(Yi-Y‾)2---(13)]]>
    作为的统计精度。使用蒙特卡洛模型需要在计算机上进行大量的运行模拟,并按式(12)计算出影像数据每年的期望值就是对应的预测量。
    具体实施步骤:
    第一步:利用计算机在一定区间内产生一组随机数组。
    第二步:将所取的随机数按照顺序依次与累积概率相比较,落入哪个区间就取相应的组标,即确定相应的增长率。
    第三步:按照上述求得的模拟增长率计算出第一组相应的预测量。
    第四步:按照上述三个步骤进行大量的模拟运算,最后将模拟运算的数学期望作为最终的预测值。
    C步骤:将灰色-马尔可夫链模型与蒙特卡洛模型两种方法进行混合。采用两种模型混合主要是根据两个模型的预测值进行计算机拟合,在经过大量的拟 合计算后可以得到两种模型的加权系数P、L(其中P为灰色-马尔可夫链模型的权重系数,L为蒙特卡洛模型的权重系数)。经过权重分配后所预测出来的值就是最终预测的数据。

    关 键 词:
    一种 医疗 影像 检查 预测 混合 优化 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:一种对医疗影像检查量预测的混合优化方法.pdf
    链接地址://www.4mum.com.cn/p-6143074.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03