• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 10
    • 下载费用:30 金币  

    重庆时时彩人工做好: 一种处理可压流体与压缩状态下的理想弹塑性固体耦合的界面解耦技术.pdf

    摘要
    申请专利号:

    重庆时时彩单双窍门 www.4mum.com.cn CN201410208857.2

    申请日:

    2014.05.16

    公开号:

    CN103971007A

    公开日:

    2014.08.06

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||实质审查的生效IPC(主分类):G06F 19/00申请日:20140516|||公开
    IPC分类号: G06F19/00(2011.01)I 主分类号: G06F19/00
    申请人: 北京航空航天大学
    发明人: 高斯; 刘铁钢
    地址: 100191 北京市海淀区学院路37号
    优先权:
    专利代理机构: 代理人:
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201410208857.2

    授权公告号:

    ||||||

    法律状态公告日:

    2017.08.29|||2014.09.03|||2014.08.06

    法律状态类型:

    授权|||实质审查的生效|||公开

    摘要

    本发明提出了一种处理可压流体与压缩状态下的理想弹塑性固体耦合的界面解耦技术,其主要的发明内容为求解一维可压流体与压缩状态下的理想弹塑性固体的多介质黎曼问题的精确解算法,使用该算法与修正的虚拟介质方法相结合,即可达到在流固耦合界面解耦的目的。

    权利要求书

    权利要求书
    1.  一种处理可压流体与压缩状态下的理想弹塑性固体耦合的界面解耦技术,其特征在于,该技术通过本发明中提出的一维可压流体与压缩状态下的理想弹塑性固体的多介质黎曼问题的精确解算法,与修正虚拟介质方法结合可以实现流固耦合界面处的解耦。

    2.  如权利要求1所述的可压流体,其特征在于,可压流体包括满足Gamma状态方程的气体和满足Tait方程的液体。

    3.  如权利要求1所述的压缩状态下的理想弹塑性固体,其特征在于,当其处于弹性状态,满足Hooke定律

    其中K是体积模量,μ是剪切模量;当其处于塑性状态,满足关系

    其中c0,ρ0,γs均为与具体固体有关的常数,Y0是屈服强度,并且该固体的屈服条件为von Mises
    屈服条件,即当其偏应力满足

    时,固体处于弹性状态,当上述不等式不成立时,固体处于塑性状态。

    4.  如权利要求1所述的一维可压流体与压缩状态下的理想弹塑性固体的多介质黎曼问题的精确解,其特征在于,该多介质黎曼问题的中间状态*L,*R,主要通过下面方程求解
    f(p*L,σ*R,WL,WR)≡fL(p*L,WL)+fR(σ*R,WR)+uR-uL=0
    其中,L,R分别表示左右介质初始状态,fL(p*L,WL)可能存在四种情况:
    (气体中产生激波)
    (液体中产生激波)
    (气体中产生稀疏波)
    (液体中产生稀疏波)
    fR(σ*R,WR)可能存在两种情况:
    (固体中产生弹性激波)

    (固体中同时产生弹性激波和塑性激波)
    其中


    说明书

    说明书一种处理可压流体与压缩状态下的理想弹塑性固体耦合的界面解耦技术
    技术领域
    本发明涉及一种处理流固耦合的界面解耦方法,具体涉及可压流体与压缩状态下的弹塑性固体耦合的界面解耦方法。
    背景技术
    流固耦合是研究流体与固体相互作用的一个研究方向,它是流体力学与固体力学相交叉而产生的一个学科分支。同时,它也是科研工作人员长期以来十分感兴趣的一个研究领域,因为它包含了很多工程中的实际问题,如由于空气与机翼作用而引起的机翼颤振、由于流体中的爆炸或冲击而引起的结构体的响应、由于海水与漂浮结构体作用而引起的该漂浮结构体的振荡等等。
    虽然对于流固耦合问题的研究已进行数十年,但该问题的研究仍然存在很多困难和挑战,如处理流体域与固体域的耦合机理、固体在强冲击情况下的数值不稳定、准确地解决流固界面处的非线性相互作用。
    因此,对于流固耦合问题的研究是十分迫切的,也是十分有意义的。本发明针对带有Mises屈服条件的理想弹塑性固体进行研究,提出了该固体与可压流体耦合的界面解耦方法。
    目前针对压缩状态下的理想弹塑性固体中波的传播的数值计算主要其中在单介质中的激波传播问题、激波管问题等等。由于在处理流固耦合问题时会产生上述的诸多困难,因此还未存在可压流体与压缩状态下的理想弹塑性固体耦合的多介质黎曼问题的精确解。即便存在该问题的相应数值解算法,一般也会产生数值耗散或数值振荡等不准确的现象。在流体强冲击的情况下,一般的数值解法甚至会失效,产生数值错误。
    具体地讲,1964年M.L.Wilkins首先提出了采用有限差分方法求解针对理想弹塑性固体的冲击响应问题,开创了用数值方法求解波在理想弹塑性固体中传播的先河。随后,1993年M.B.Tyndall提出了采用通量修正方法求解理想弹塑性固体中的激波传播问题与激波管问题,使该问题的数值求解方法达到高阶精度。在2000年,B.P.Howell用FreeLagrange的方法使得求解该问题的数值方法可以从固体小变形推广到大变形??梢钥闯?,虽然数值求解该问题的方法一直在发展,但由于流固耦合的困难,该方向的研究仍主要停留在单介质阶段。
    另一方面,T.G.Liu,B.C.Khoo,K.S.Yeo在2003年提出的修正的虚拟介质方法(MGFM)在求解多介质耦合问题中得到了很好的应用。2003年该方法已经可以在流体之间的耦合(气体-气体、液体-液体、气体-液体)中得以应用,甚至在强冲击的情况下,该方法也是准确的。2008年该方法已经推广到了流体与固体的耦合,但这里的固体针对的是Hydro-Elasto-Plastic以及Naviers状态方程,这两种状态方程分别只在强冲击及小变形形变情况下适用,而上述的理想弹塑性状态方程在一般强度下都适用。
    发明内容
    本发明的界面解耦技术,是通过本发明提出的一维可压流体与压缩状态下的理想弹塑性固体耦合的多介质黎曼问题精确解的算法,结合修正的虚拟介质方法实现的。因此,本发明的主要发明内容为一维可压流体与压缩状态下的理想弹塑性固体耦合的多介质黎曼问题精确解的算法。
    对于一维情况,假设左侧为可压流体(气体或液体),右侧为压缩状态下的理想弹塑性固体,该多介质黎曼问题用数学语言描述为
    &PartialD;U&PartialD;t+&PartialD;F(U)&PartialD;x=0,U|t=0=UL,x<x0&PartialD;V&PartialD;t+&PartialD;G(V)&PartialD;x=0,V|t=0=VR,x>x0]]>
    其中,
    U=ρρuE,F(U)=ρρu2+p(E+p)u,V=ρρuE,G(V)=ρρu2-σ(E-σ)u]]>
    此处,ρ是密度,u是速度,p是压力,E是总能,σ是应力。此外,对于理想弹塑性固体,其总应力和压力还满足下面关系:
    σ=-p+s
    其中,s是偏应力。下面讨论各介质的状态方程,对于气体,有
    p=(γg-1)ρe
    其中γg是与具体气体有关的常数。对于液体,有
    p=(γw-1)ρe-γw(B-A)
    其中γw和B是与具体液体有关的常数。对于固体,当压缩状态下的理想弹塑性固体处于弹性状态,有
    p&CenterDot;=Kρ&CenterDot;ρ]]>s&CenterDot;=-43μρ&CenterDot;ρ]]>
    其中K是体积模量,μ是剪切模量。当压缩状态下的理想弹塑性固体处于塑性状态,有
    p=c02(ρ-ρ0)+(γs-1)ρe]]>s=-23Y0]]>
    其中c0,ρ0,γs均为与具体固体有关的常数,Y0是屈服强度。当理想弹塑性固体满足下面方程时为弹性 状态
    s2(23Y0)2]]>
    当上述不等式不成立时,固体处于塑性状态。该问题的求解过程分为以下三步实现:
    1.当给定多介质黎曼问题的初值状态UL和UR时,首先需要确定该问题的解系,并对不同的解系采用不同的方程对解系中的各状态进行求解。其中U*L和U*R分别表示紧挨多介质界面左右两侧的状态,U1和U2分别表示当介质为理想弹塑性固体时对应的左右两侧弹性波与塑性波之间的状态。总之,在可压流体(气体或液体)中可能出现激波或稀疏波,在压缩状态下的理想弹塑性固体中可能出现弹性波或弹性波和塑性波同时存在这两种情况。不管何种情况,都可通过下面方程求解中间状态
    f(p*L,σ*R,WL,WR)≡fL(p*L,WL)+fR(σ*R,WR)+uR-uL=0
    且在界面处满足(若左侧为流体,右侧为理想弹塑性固体)
    p*L=-σ*R
    其中,fL(p*L,WL)可能存在四种情况:
    fLS|g(p*L,pL)=(p*L-pL)[1ρL-1ρ*L|g]]]>(气体中产生激波)
    fLS|w(p*L,pL)=(p*L-pL)[1ρL-1ρ*L|w]]]>(液体中产生激波)
    fLR|g(p*L,pL)=2aL|gγg-1[(p*LpL)γg-12γg-1]]]>(气体中产生稀疏波)
    fLR|w(p*L,pL)=2aL|wγw-1[(p*L+B-ApL+B-A)γw-12γw-1]]]>(液体中产生稀疏波)
    fR(σ*R,WR)可能存在两种情况:
    fRS|sldE(σ*R,σR)=(σR-σ*R)[1ρR-1ρ*R|sld]]]>(固体中产生弹性激波)
    fRS|sldE2(σ2,σR)+fRS|sldP(σ*R,σ2)=(σR-σ2)[1ρR-1ρ2|sld]+(σ2-σ*R)[1ρ2-1ρ*R|sld]]]>
    (固体中同时产生弹性激波和塑性激波)
    其中
    ρ*L|gρL=(γg+1)p*L+(γg-1)pL(γg+1)pL+(γg-1)p*L,ρ*L|wρL=(γw+1)p*L+(γw-1)pL+2γw(B-A)(γw+1)pL+(γw-1)p*L+2γw(B-A)]]>
    aL|g=γgpLρL,aL|w=γw(pL+B-A)ρL,ρ*R|sldρ2=-(γs-1)σ*R-(γs-1)σ2+2p*R+2c02ρ0-(γs-1)σ2-(γs-1)σ*R+2p2+2c02ρ0]]>
    2.因上一步已确定解系的各状态,接下来需要确定各波波速才可确定各状态的准确位置。同样地,对于上一步假设,考虑激波情况(稀疏波情况可通过解的自相似性求解),左侧的激波有两种情况,右侧的激波也有两种情况(产生弹性波或同时产生弹性波和塑形波)。
    SL=uL-p*L-pL1/ρL-1/ρ*L|gρL]]>(气体中激波波速)
    SL=uL-p*L-pL1/ρL-1/ρ*L|wρL]]>(液体中激波波速)
    SR|E=uR+σR-σ*R1/ρR-1/ρ*R|sldρR]]>(固体弹性形变时弹性波波速)
    SR|E2=uR+σR-σ21/ρR-1/ρ2ρR]]>(固体塑形形变时弹性波波速)
    SR|P=u2+σ2-σ*R1/ρ2-1/ρ*R|sldρ2]]>(固体塑形形变时塑形波波速)
    3.最后将解系中的以上各结果进行整合,并输出精确解。整个过程的流程图见图1。
    通过以上过程,即可定义修正的虚拟介质方法的虚拟介质的状态,于是可以根据修正虚拟介质方法的步骤实现对该流固耦合问题解耦。
    附图说明
    图1是求解一维可压流体与压缩状态下的理想弹塑性固体耦合问题精确解的流程图;
    图2至图4是求解水与理想弹塑性固体耦合问题精确解的一个算例结果。
    具体实施方式
    为了说明本发明的具体实施方式,举一个简单的例子??悸怯也嗬硐氲苄怨烫迓潦茏蟛嗨母哐垢咚俪寤鞯囊晃杪侍?,其中这两个介质的初始无量纲的值为uL=50.0,pL=50000.0,ρL=1.507,uR=0.0,pR=1.0,ρR=2.7,sR=0.0。铝的状态方程的相关无量纲参数分别为ρ0=2.71,c0=538.0,γs=2.71,K=740000.0,μ=265000.0,Y0=3000.0。
    该问题将在左侧水中产生激波,在右侧理想弹塑形固体中同时产生弹性波和塑形波。通过采用精确解求解,可得到在时间t=0.001的总应力、速度、密度如图2至图4所示。

    关 键 词:
    一种 处理 流体 压缩 状态 理想 塑性 固体 耦合 界面 技术
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:一种处理可压流体与压缩状态下的理想弹塑性固体耦合的界面解耦技术.pdf
    链接地址://www.4mum.com.cn/p-6142889.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03