• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 14
    • 下载费用:30 金币  

    重庆时时彩平刷一期分析: 一种基于快速聚类的行人实时跟踪方法.pdf

    摘要
    申请专利号:

    重庆时时彩单双窍门 www.4mum.com.cn CN201611004313.X

    申请日:

    2016.11.15

    公开号:

    CN106570490A

    公开日:

    2017.04.19

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G06K 9/00申请日:20161115|||公开
    IPC分类号: G06K9/00; G06K9/32; G06K9/48; G06K9/62 主分类号: G06K9/00
    申请人: 华南理工大学
    发明人: 张鑫; 李炼
    地址: 510640 广东省广州市天河区五山路381号
    优先权:
    专利代理机构: 广州市华学知识产权代理有限公司 44245 代理人: 郑浦娟
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611004313.X

    授权公告号:

    |||

    法律状态公告日:

    2017.05.17|||2017.04.19

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明公开了一种基于快速聚类的行人实时跟踪方法,首先获取第一帧图像行人兴趣区域,生成初始类别和类别中心;从第二帧图像起,根据上一帧图像获得当前帧图像行人兴趣区域且提取最终特征,根据最终特征与上一帧图像所属类别类别中心或其他类别中心,通过核化相关滤波器预测置信度,检测出当前帧图像所属类别;当目标丢失时,针对下一帧图像,先获取该帧图像中可能存在行人目标的区域,根据各区域最终特征与各个类别中心,通过核化相关滤波器预测置信度,检测出行人兴趣区域以及该帧图像所属类别,寻找到丢失目标。本发明将行人不同姿态、遮挡状态以及外界变化聚类成不同外观类别,缓解目标跟踪中面临的姿态变化、遮挡以及外界光照变化的问题。

    权利要求书

    1.一种基于快速聚类的行人实时跟踪方法,其特征在于,步骤如下:
    S1、首先通过行人分类器对第一帧图像进行检测,获取到行人目标的初始位置,即宽高
    和中心点坐标;然后根据行人目标的初始位置截取行人兴趣区域生成到行人外观初始类
    别,并且将行人兴趣区域作为该初始类别的类别中心;
    S2、从第二帧图像开始,以上一帧图像行人目标的中心点为中心,宽高为大小截取到当
    前帧图像的行人兴趣区域;
    S3、从当前帧图像的行人兴趣区域中提取方向梯度直方图特征,然后对方向梯度直方
    图特征进行傅里叶变换后得到当前帧图像的行人兴趣区域最终的特征图;
    S4、根据步骤S3获取到的当前帧图像的行人兴趣区域最终的特征图和上一帧图像中行
    人外观所属类别的类别中心,通过核化相关滤波器预测行人目标的中心点以及置信度X;然
    后进入步骤S5;
    S5、将步骤S4中获取到的置信度X与设定阈值A进行比较;
    若置信度X大于设定阈值A,则当前帧图像中行人外观所属类别即为上一帧图像中行人
    外观所属类别,此时根据当前帧图像的行人兴趣区域,利用均值平滑更新当前帧图像中行
    人外观所属类别的类别中心;针对下一帧图像进行处理时,进入步骤S2;
    若置信度X小于设定阈值A,则进入步骤S6;
    S6、根据步骤S3获取到的当前帧图像的行人兴趣区域最终的特征图和除上一帧图像所
    属类别的类别中心之外的其他各类别中心,分别通过核化相关滤波器预测行人目标的中心
    点以及置信度,并且从中选取出值最大的置信度Y;然后进入步骤S7;
    S7、将步骤S6中获取到的置信度Y与设定阈值A和设定阈值B进行比较,其中设定阈值B
    小于设定阈值A;
    若置信度Y大于设定阈值A,则当前帧图像中行人外观所属类别即为根据核化相关滤波
    器预测得到置信度Y的类别中心对应的类别;此时根据当前帧图像的行人兴趣区域,利用均
    值平滑更新当前帧图像中行人外观所属类别的类别中心;针对下一帧图像进行处理时,进
    入步骤S2;
    若置信度Y在设定阈值A和设定阈值B之间,则根据当前帧图像的行人兴趣区域,直接生
    成新的行人外观类别;针对下一帧图像进行处理时,进入步骤S2;
    若置信度Y小于设定阈值B,则表示当前帧图像中的行人目标丢失,针对下一帧图像进
    行处理时,进入步骤S8;
    S8、利用图像边缘信息生成当前帧图像中可能存在行人目标的各个区域,然后进入步
    骤S9;
    S9、针对当前帧图像中可能存在行人目标的各个区域,分别提取方向梯度直方图特征,
    然后对方向梯度直方图特征进行傅里叶变换后得到当前帧图像中可能存在行人目标的各
    个区域所对应最终的特征图;
    S10、根据当前帧图像中可能存在行人目标的各个区域所对应最终的特征图和各类别
    中心,通过核化相关滤波器分别预测行人目标的中心点以及置信度,并且从中选取出值最
    大的置信度Z;然后进入步骤S11;
    S11、将步骤S10中获取到的置信度Z与设定阈值A进行比较;
    若置信度Z大于设定阈值A,则预测得到置信度Z的最终的特征图对应的区域为当前帧
    图像的行人兴趣区域,当前帧图像中行人外观所属类别即为根据核化相关滤波器预测得到
    置信度Z的类别中心对应的类别;此时根据当前帧图像的行人兴趣区域,利用均值平滑更新
    当前帧图像中行人外观所属类别的类别中心;针对下一帧图像进行处理时,进入步骤S2;
    若置信度Z小于设定阈值A,则表示当前帧图像中的行人目标未正确检测到,针对下一
    帧图像进行处理时,进入步骤S8。
    2.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,
    步骤S1中根据第一帧图像截取得到的行人兴趣区域生成初始类别的类别中心为:
    modelAlphaf′=alphaf′;
    modelXf′=xf′;
    其中alphaf′为第一帧图像的核化相关滤波器模型的系数,modelAlphaf′表示初始类
    别的类别中心的模型系数,modelXf′表示初始类别的类别中心的模型特征,xf′为第一帧图
    像的核化相关滤波器模型的特征;
    第一帧图像的核化相关滤波器模型的特征xf′获取过程如下:从第一帧图像的行人兴
    趣区域中提取方向梯度直方图特征,然后对方向梯度直方图特征进行二维傅里叶变换后得
    到第一帧图像的行人兴趣区域最终的特征图,将其作为第一帧图像的核化相关滤波器模型
    的特征xf′;
    其中
    alphaf′=yf./(xf′.*xf′+lambda);
    yf为二维高斯分布的傅里叶变换,lambda为正规化系数。
    3.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,所述步骤S3和
    步骤S9中,方向梯度直方图特征与汉明窗口相乘后再进行二维傅里叶变换后得到当前帧图
    像的行人兴趣区域最终的特征图。
    4.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,所述步骤S4和
    步骤S6中核化相关滤波器的模型为:
    alphaf=yf./(xf.*xf+lambda);
    xf=featureMap;
    其中alphaf为当前帧图像的核化相关滤波器模型的系数,yf为二维高斯分布的傅里叶
    变换,featureMap为当前帧图像的行人兴趣区域最终的特征图,lambda为正规化系数。
    5.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,所述步骤S10
    中核化相关滤波器的模型为:
    本步骤中核化相关滤波器的模型为:
    alphaf=yf./(xf".*xf"+lambda);
    xf"=featureMap";
    其中alphaf为当前帧图像的核化相关滤波器模型的系数,yf为二维高斯分布的傅里叶
    变换,featureMap"为当前帧图像中可能存在行人目标的各个区域所对应最终的特征图,
    lambda为正规化系数。
    6.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,步骤S4中,通
    过核化相关滤波器预测的置信度response为:
    response=max(real(ifft2(modelAlphaf.*(modelXf.*featureMap)));
    其中featureMap为当前帧图像的行人兴趣区域最终的特征图,modelXf为上一帧图像
    中行人外观所属类别的类别中心的模型特征,modelAlphaf为上一帧图像中行人外观所属
    类别的类别中心的模型系数,ifft2函数表示二维傅里叶反变换,real函数表示将二维复数
    数组转换成二位实数数组;
    步骤S4中,通过核化相关滤波器预测的行人目标的中心点为response的二维坐标。
    7.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,
    步骤S6中,通过核化相关滤波器预测的置信度为:
    responsei=max(real(ifft2(modelAlphafi.*(modelXfi.*featureMap)));
    i=1,2,3…,n;
    其中featureMap为当前帧图像的行人兴趣区域最终的特征图;n为除上一帧图像所属
    类别的类别中心之外的其他类别中心总数;modelXfi为除上一帧图像所属类别的类别中心
    之外的其他类别中心中第i个类别中心的模型特征,modelAlphafi为除上一帧图像所属类
    别的类别中心之外的其他类别中心中第i个类别中心的模型系数,ifft2函数表示二维傅里
    叶反变换,real函数表示将二维复数数组转换成二位实数数组;responsei为根据当前帧图
    像的行人兴趣区域最终的特征图和除上一帧图像所属类别的类别中心之外的其他类别中
    心中第i个类别中心,通过核化相关滤波器预测的置信度;
    步骤S6中,从置信度response1至responsen中选取出值最大的置信度Y,通过核化相关
    滤波器预测的行人目标的中心点为置信度Y二维坐标。
    8.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,
    步骤S10中,通过核化相关滤波器预测的置信度为:
    responseij=max(real(ifft2(modelAlphafi.*(modelXfi.*featureMapj)));
    i=1,2,3…,N;j=1,2,3,…M;
    其中featureMapj为当前帧图像中可能存在行人目标的第j个区域所对应最终的特征
    图,N为类别中心总数,modelXfi为第i个类别中心的模型特征,modelAlphafi为第i个类别中
    心的模型系数,ifft2函数表示二维傅里叶反变换,real函数表示将二维复数数组转换成二
    位实数数组;responseij为根据当前帧图像中可能存在行人目标的第j个区域所对应最终的
    特征图和第i个类别中心,通过核化相关滤波器预测的置信度;
    步骤S10中,从置信度response11,response12,…,response1M至responseN1,
    responseN2,…,responseNM中选取出值最大的置信度Z,通过核化相关滤波器预测的行人目
    标的中心点为置信度Z二维坐标。
    9.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,所述步骤S5、
    S7和S11中,根据当前帧图像的行人兴趣区域,利用均值平滑更新当前帧图像中行人外观所
    属类别的类别中心,则更新后的当前帧图像中行人外观所属类别的类别中心为:
    modelAlphaf"=(1-α)*modelAlphaf′+α*alphaf;
    modelXf"=(1-α)*modelXf′+α*xf;
    xf=featureMap;
    其中alphaf为当前帧图像的核化相关滤波器模型的系数,α为平滑系数,modelAlphaf′
    更新前当前帧图像中行人外观所属类别的类别中心的模型系数,modelAlphaf"更新后当前
    帧图像中行人外观所属类别的类别中心的模型系数,modexXf′为更新前当前帧图像中行人
    外观所属类别的类别中心的模型特征,modelXf"为更新后当前帧图像中行人外观所属类别
    的类别中心的模型特征,featureMap为当前帧图像的行人兴趣区域最终的特征图。
    10.根据权利要求1所述的基于快速聚类的行人实时跟踪方法,其特征在,所述设定阈
    值A为0.75~0.85,所述设定阈值B为0.60~0.68。

    说明书

    一种基于快速聚类的行人实时跟踪方法

    技术领域

    本发明涉及图像处理领域,特别涉及一种基于快速聚类的行人实时跟踪方法。

    背景技术

    视觉是人类认知世界的重要途径之一,人类获取外部信息的80%来自视觉系统。
    目标跟踪技术作为计算机视觉领域的热门课题之一,是对连续的图像序列进行运动目标检
    测、提取特征、分类识别、跟踪滤波、行为识别,以获得目标准确的运动信息参数(如位置、速
    度等),并对其进行相应的处理分析,实现对目标的行为理解。

    在现阶段电视监控系统作为公共安全领域中的一项重要技术已经得到了广泛的
    应用。但是大多数电视监视系统的功能仅仅停留在监控者对视频信号的人工监视和事后录
    像分析上,浪费了大量的人力物力。在计算机智能监控系统中,监控系统首先对图像进行预
    处理去除噪声,然后通过适当的检测算法确定运动目标继而通过跟踪算法在摄像机视野内
    跟踪运动目标。同时进行报警以及保存视频数据等一系列工作。而在这个系统中,其核心部
    分就是运动目标检测与跟踪算法技术,这个技术是保证整个系统实现其功能的关键。

    然而,在实际的行人监控中,行人往往被视为非刚体目标。自身运动过程中存在或
    多或少的形状变化,和与环境的遮挡问题,与此同时存在外界环境光照、亮度的变化,而这
    些变化在随着时间的积累,对目标的预测产生偏移,之后行人目标对象越来越难以预测和
    跟踪准确。

    发明内容

    本发明的目的在于克服现有技术的缺点与不足,提供一种基于快速聚类的行人实
    时跟踪方法,该方法自动将行人不同姿态、不同遮挡状态以及外界的变化聚类成不同的外
    观类别,从而缓解目标跟踪中面临的姿态变化、遮挡以及外界光照变化的问题。

    本发明的目的通过下述技术方案实现:一种基于快速聚类的行人实时跟踪方法,
    步骤如下:

    S1、首先通过行人分类器对第一帧图像进行检测,获取到行人目标的初始位置,即
    宽高和中心点坐标;然后根据行人目标的初始位置截取行人兴趣区域生成到行人外观初始
    类别,并且将行人兴趣区域作为该初始类别的类别中心;

    S2、从第二帧图像开始,以上一帧图像行人目标的中心点为中心,宽高为大小截取
    到当前帧图像的行人兴趣区域;

    S3、从当前帧图像的行人兴趣区域中提取方向梯度直方图特征,然后对方向梯度
    直方图特征进行傅里叶变换后得到当前帧图像的行人兴趣区域最终的特征图;

    S4、根据步骤S3获取到的当前帧图像的行人兴趣区域最终的特征图和上一帧图像
    中行人外观所属类别的类别中心,通过核化相关滤波器预测行人目标的中心点以及置信度
    X;然后进入步骤S5;

    S5、将步骤S4中获取到的置信度X与设定阈值A进行比较;

    若置信度X大于设定阈值A,则当前帧图像中行人外观所属类别即为上一帧图像中
    行人外观所属类别,此时根据当前帧图像的行人兴趣区域,利用均值平滑更新当前帧图像
    中行人外观所属类别的类别中心;针对下一帧图像进行处理时,进入步骤S2;

    若置信度X小于设定阈值A,则进入步骤S6;

    S6、根据步骤S3获取到的当前帧图像的行人兴趣区域最终的特征图和除上一帧图
    像所属类别的类别中心之外的其他各类别中心,分别通过核化相关滤波器预测行人目标的
    中心点以及置信度,并且从中选取出值最大的置信度Y;然后进入步骤S7;

    S7、将步骤S6中获取到的置信度Y与设定阈值A和设定阈值B进行比较,其中设定阈
    值B小于设定阈值A;

    若置信度Y大于设定阈值A,则当前帧图像中行人外观所属类别即为根据核化相关
    滤波器预测得到置信度Y的类别中心对应的类别;此时根据当前帧图像的行人兴趣区域,利
    用均值平滑更新当前帧图像中行人外观所属类别的类别中心;针对下一帧图像进行处理
    时,进入步骤S2;

    若置信度Y在设定阈值A和设定阈值B之间,则根据当前帧图像的行人兴趣区域,直
    接生成新的行人外观类别;针对下一帧图像进行处理时,进入步骤S2;

    若置信度Y小于设定阈值B,则表示当前帧图像中的行人目标丢失,针对下一帧图
    像进行处理时,进入步骤S8;

    S8、利用图像边缘信息生成当前帧图像中可能存在行人目标的各个区域,然后进
    入步骤S9;

    S9、针对当前帧图像中可能存在行人目标的各个区域,分别提取方向梯度直方图
    特征,然后对方向梯度直方图特征进行傅里叶变换后得到当前帧图像中可能存在行人目标
    的各个区域所对应最终的特征图;

    S10、根据当前帧图像中可能存在行人目标的各个区域所对应最终的特征图和各
    类别中心,通过核化相关滤波器分别预测行人目标的中心点以及置信度,并且从中选取出
    值最大的置信度Z;然后进入步骤S11;

    S11、将步骤S10中获取到的置信度Z与设定阈值A进行比较;

    若置信度Z大于设定阈值A,则预测得到置信度Z的最终的特征图对应的区域为当
    前帧图像的行人兴趣区域,当前帧图像中行人外观所属类别即为根据核化相关滤波器预测
    得到置信度Z的类别中心对应的类别;此时根据当前帧图像的行人兴趣区域,利用均值平滑
    更新当前帧图像中行人外观所属类别的类别中心;针对下一帧图像进行处理时,进入步骤
    S2;

    若置信度Z小于设定阈值A,则表示当前帧图像中的行人目标未正确检测到,针对
    下一帧图像进行处理时,进入步骤S8。

    优选的,步骤S1中根据第一帧图像截取得到的行人兴趣区域生成初始类别的类别
    中心为:

    modelAlphaf′=alphaf′;

    modelXf′=xf′;

    其中alphaf′为第一帧图像的核化相关滤波器模型的系数,modelAlphaf′表示初
    始类别的类别中心的模型系数,modelXf′表示初始类别的类别中心的模型特征,xf′为第一
    帧图像的核化相关滤波器模型的特征;

    第一帧图像的核化相关滤波器模型的特征xf′获取过程如下:从第一帧图像的行
    人兴趣区域中提取方向梯度直方图特征,然后对方向梯度直方图特征进行二维傅里叶变换
    后得到第一帧图像的行人兴趣区域最终的特征图,将其作为第一帧图像的核化相关滤波器
    模型的特征xf′;

    其中

    alphaf′=yf./(xf′.*xf′+lambda);

    yf为二维高斯分布的傅里叶变换,lambda为正规化系数。

    优选的,所述步骤S3和步骤S9中,方向梯度直方图特征与汉明窗口相乘后再进行
    二维傅里叶变换后得到当前帧图像的行人兴趣区域最终的特征图。

    优选的,所述步骤S4和步骤S6中核化相关滤波器的模型为:

    alphaf=yf./(xf.*xf+lambda);

    xf=featureMap;

    其中alphaf为当前帧图像的核化相关滤波器模型的系数,yf为二维高斯分布的傅
    里叶变换,featureMap为当前帧图像的行人兴趣区域最终的特征图,lambda为正规化系数。

    优选的,所述步骤S10中核化相关滤波器的模型为:

    本步骤中核化相关滤波器的模型为:

    alphaf=yf./(xf".*xf"+lambda);

    xf"=featureMap";

    其中alphaf为当前帧图像的核化相关滤波器模型的系数,yf为二维高斯分布的傅
    里叶变换,featureMap"为当前帧图像中可能存在行人目标的各个区域所对应最终的特征
    图,lambda为正规化系数。

    优选的,步骤S4中,通过核化相关滤波器预测的置信度response为:

    response=max (real(ifft2(modelAlphaf.*(modelXf.*featureMap)));

    其中featureMap为当前帧图像的行人兴趣区域最终的特征图,modelXf为上一帧
    图像中行人外观所属类别的类别中心的模型特征,modelAlphaf为上一帧图像中行人外观
    所属类别的类别中心的模型系数,ifft2函数表示二维傅里叶反变换,real函数表示将二维
    复数数组转换成二位实数数组;

    步骤S4中,通过核化相关滤波器预测的行人目标的中心点为response的二维坐
    标。

    优选的,步骤S6中,通过核化相关滤波器预测的置信度为:

    responsei=max (real(ifft2(modelAlphafi.*(modelXfi.*featureMap)));

    i=1,2,3…,n;

    其中featureMap为当前帧图像的行人兴趣区域最终的特征图;n为除上一帧图像
    所属类别的类别中心之外的其他类别中心总数;modelXfi为除上一帧图像所属类别的类别
    中心之外的其他类别中心中第i个类别中心的模型特征,modelAlphafi为除上一帧图像所
    属类别的类别中心之外的其他类别中心中第i个类别中心的模型系数,ifft2函数表示二维
    傅里叶反变换,real函数表示将二维复数数组转换成二位实数数组;responsei为根据当前
    帧图像的行人兴趣区域最终的特征图和除上一帧图像所属类别的类别中心之外的其他类
    别中心中第i个类别中心,通过核化相关滤波器预测的置信度;

    步骤S6中,从置信度response1至responsen中选取出值最大的置信度Y,通过核化
    相关滤波器预测的行人目标的中心点为置信度Y二维坐标。

    优选的,步骤S10中,通过核化相关滤波器预测的置信度为:

    responseij=max (real(ifft2(modelAlphafi.*(modelXfi.*featureMapj)));

    i=1,2,3…,N;j=1,2,3,…M;

    其中featureMapj为当前帧图像中可能存在行人目标的第j个区域所对应最终的
    特征图,N为类别中心总数,modelXfi为第i个类别中心的模型特征,modelAlphafi为第i个类
    别中心的模型系数,ifft2函数表示二维傅里叶反变换,real函数表示将二维复数数组转换
    成二位实数数组;responseij为根据当前帧图像中可能存在行人目标的第j个区域所对应最
    终的特征图和第i个类别中心,通过核化相关滤波器预测的置信度;

    步骤S10中,从置信度response11,response12,…,response1M至responseN1,
    responseN2,…,responseNM中选取出值最大的置信度Z,通过核化相关滤波器预测的行人目
    标的中心点为置信度Z二维坐标。

    优选的,所述步骤S5、S7和S11中,根据当前帧图像的行人兴趣区域,利用均值平滑
    更新当前帧图像中行人外观所属类别的类别中心,则更新后的当前帧图像中行人外观所属
    类别的类别中心为:

    modelAlphaf"=(1-α)*modelAlphaf′+α*alphaf;

    modelXf"=(1-α)*modelXf′+α*xf;

    xf=featureMap;

    其中alphaf为当前帧图像的核化相关滤波器模型的系数,α为平滑系数,
    modelAlphaf′更新前当前帧图像中行人外观所属类别的类别中心的模型系数,
    modelAlphaf"更新后当前帧图像中行人外观所属类别的类别中心的模型系数,modelXf′为
    更新前当前帧图像中行人外观所属类别的类别中心的模型特征,modelXf"为更新后当前帧
    图像中行人外观所属类别的类别中心的模型特征,featureMap为当前帧图像的行人兴趣区
    域最终的特征图。

    优选的,所述设定阈值A为0.75~0.85,所述设定阈值B为0.60~0.68。

    本发明相对于现有技术具有如下的优点及效果:

    (1)本发明行人实时跟踪方法中,首先获取第一帧图像的行人兴趣区域,生成行人
    外观初始类别和类别中心;从第二帧图像开始,根据上一帧图像获取到当前帧图像的行人
    兴趣区域,并且提取行人兴趣区域的最终特征,然后根据人兴趣区域的最终特征与上一帧
    图像中行人外观所属类别的类别中心或其他类别中心,通过核化相关滤波器预测置信度,
    根据该置信度检测出当前帧图像中行人外观所属类别;当目标丢失时,针对下一帧图像进
    行处理时,先获取到该帧图像中可能存在行人目标的各个区域,然后根据各个区域的最终
    特征与各个类别中心,通过核化相关滤波器预测置信度,根据该置信度检测出行人兴趣区
    域以及该帧图像中行人外观所属类别,以寻找到丢失目标。方法自动将行人不同姿态、不同
    遮挡状态以及外界的变化聚类成不同的外观类别,从而缓解目标跟踪中面临的姿态变化、
    遮挡以及外界光照变化的问题??杉痉⒚鞣椒ㄖ?,核化相关滤波器算法根据行人兴趣区
    域和已经生成的类别中心,预测得到行人目标置信度,通过置信度实现快速聚类,相比传统
    的k值聚类(k-means)利用欧几里得距离对样本进行聚类需要离线训练的这种方式,本发明
    方法行人目标跟踪的实时性更高。

    (2)本发明方法中当图像中的行人目标丢失时时,针对下一帧图像进行处理时,首
    先获取该帧图像可能存在行人目标的各个区域,然后通过之前聚类生成的所有类别中心对
    该帧图像可能存在行人目标的各个区域进行判定,得出该帧图像的行人兴趣区域的同时,
    获取到其所属类别,从而实现再次跟踪??杉?,本发明采用当前帧图像处理之前生成的多个
    类别中心对当前帧图像的行人外观所属类别进行判断,能够自动将行人不同姿态、不同遮
    挡状态以及外界的变化聚类成不同的外观类别,从而缓解目标跟踪中面临的姿态变化、遮
    挡以及外界光照变化的问题,具有行人目标跟踪准确性和实时性高的优点??朔钟屑际?br />中由于行人目标运动过程中姿态变化、环境遮挡问题以及外界环境光照亮度等变化随着时
    间的积累,对行人目标的预测产生偏移的技术问题。

    (3)本发明方法中在针对当前帧图像中的行人目标进行跟踪时,考虑当前帧图像
    和上一帧图像中行人外观所属类别很可能相同,所以首先通过上一帧图像中行人外观所属
    类别的类别中心预测出置信度,从而判断是否和上一帧图像的行人外观所属类别是否相
    同,在不相同的情况下,才通过其他类别中心判断出当前帧图像中行人外观所属类别,因此
    具有计算量小,跟踪速度快的优点。

    具体实施方式

    下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。

    实施例

    本实施例公开了一种基于快速聚类的行人实时跟踪方法,步骤如下:

    S1、首先通过行人分类器对第一帧图像进行检测,获取到行人目标的初始位置,即
    宽高和中心点坐标;然后根据行人目标的初始位置截取行人兴趣区域生成到行人外观初始
    类别,并且将行人兴趣区域作为该初始类别的类别中心;

    本步骤中根据第一帧图像截取得到的行人兴趣区域生成初始类别的类别中心为:

    modelAlphaf′=alphaf′;

    modelXf′=xf′;

    其中alphaf′为第一帧图像的核化相关滤波器模型的系数,modelAlphaf′表示初
    始类别的类别中心的模型系数,modelXf′表示初始类别的类别中心的模型特征,xf′为第一
    帧图像的核化相关滤波器模型的特征。

    第一帧图像的核化相关滤波器模型的特征获取过程如下:从第一帧图像的行人兴
    趣区域中提取方向梯度直方图特征,然后对方向梯度直方图特征进行二维傅里叶变换后得
    到第一帧图像的行人兴趣区域最终的特征图,将其作为第一帧图像的核化相关滤波器模型
    的特征;

    其中

    alphaf′=yf./(xf′.*xf′+lambda);

    yf为二维高斯分布的傅里叶变换,lambda为正规化系数。

    S2、从第二帧图像开始,以上一帧图像行人目标的中心点为中心,宽高为大小截取
    到当前帧图像的行人兴趣区域;

    S3、从当前帧图像的行人兴趣区域中提取方向梯度直方图特征,然后对方向梯度
    直方图特征进行二维傅里叶变换后得到当前帧图像的行人兴趣区域最终的特征图;其中本
    实施例中方向梯度直方图特征在进行二维傅里叶变换之前与汉明窗口相乘来减缓行人的
    边缘效应;

    S4、根据步骤S3获取到的当前帧图像的行人兴趣区域最终的特征图和上一帧图像
    中行人外观所属类别的类别中心,通过核化相关滤波器预测行人目标的中心点以及置信度
    X;然后进入步骤S5;

    其中本步骤中核化相关滤波器的模型为:

    alphaf=yf./(xf.*xf+lambda);

    xf=featureMap;

    其中alphaf为当前帧图像的核化相关滤波器模型的系数,yf为二维高斯分布的傅
    里叶变换,featureMap为当前帧图像的行人兴趣区域最终的特征图。

    本步骤中通过核化相关滤波器预测的置信度response为:

    response=max (real(ifft2(modelAlphaf.*(modelXf.*featureMap)));

    其中featureMap为当前帧图像的行人兴趣区域最终的特征图,modelXf为上一帧
    图像中行人外观所属类别的类别中心的模型特征,modelAlphaf为上一帧图像中行人外观
    所属类别的类别中心的模型系数,ifft2函数表示二维傅里叶反变换,real函数表示将二维
    复数数组转换成二位实数数组;

    本步骤中通过核化相关滤波器预测的行人目标的中心点为response的二维坐标。

    S5、将步骤S4中获取到的置信度X与设定阈值A进行比较;本实施例中设定阈值A为
    0.75~0.85之间的一个值。

    若置信度X大于设定阈值A,则当前帧图像中行人外观所属类别即为上一帧图像中
    行人外观所属类别,此时根据当前帧图像的行人兴趣区域,利用均值平滑更新当前帧图像
    中行人外观所属类别的类别中心;针对下一帧图像进行处理时,进入步骤S2;

    若置信度X小于设定阈值A,则进入步骤S6;

    S6、根据步骤S3获取到的当前帧图像的行人兴趣区域最终的特征图和除上一帧图
    像所属类别的类别中心之外的其他各类别中心,分别通过核化相关滤波器预测行人目标的
    中心点以及置信度,并且从中选取出值最大的置信度Y;然后进入步骤S7;

    本步骤中,核化相关滤波器的模型为:

    alphaf=yf./(xf.*xf+lambda);

    xf=featureMap;

    其中alphaf为当前帧图像的核化相关滤波器模型的系数,yf为二维高斯分布的傅
    里叶变换,featureMap为当前帧图像的行人兴趣区域最终的特征图。

    本步骤中,通过核化相关滤波器预测的置信度为:

    responsei=max (real(ifft2(modelAlphafi.*(modelXfi.*featureMap)));

    i=1,2,3…,n;

    其中featureMap为当前帧图像的行人兴趣区域最终的特征图;n为除上一帧图像
    所属类别的类别中心之外的其他类别中心总数;modelXfi为除上一帧图像所属类别的类别
    中心之外的其他类别中心中第i个类别中心的模型特征,modelAlphafi为除上一帧图像所
    属类别的类别中心之外的其他类别中心中第i个类别中心的模型系数,ifft2函数表示二维
    傅里叶反变换,real函数表示将二维复数数组转换成二位实数数组;responsei为根据当前
    帧图像的行人兴趣区域最终的特征图和除上一帧图像所属类别的类别中心之外的其他类
    别中心中第i个类别中心,通过核化相关滤波器预测的置信度;

    本步骤中,从置信度response1至responsen中选取出值最大的置信度Y,通过核化
    相关滤波器预测的行人目标的中心点为置信度Y二维坐标。

    S7、将步骤S6中获取到的置信度Y与设定阈值A和设定阈值B进行比较,其中设定阈
    值B小于设定阈值A;其中本实施例中设定阈值B为0.60~0.68范围内的一个值。

    若置信度Y大于设定阈值A,则当前帧图像中行人外观所属类别即为根据核化相关
    滤波器预测得到置信度Y的类别中心对应的类别;此时根据当前帧图像的行人兴趣区域,利
    用均值平滑更新当前帧图像中行人外观所属类别的类别中心;针对下一帧图像进行处理
    时,进入步骤S2;

    若置信度Y在设定阈值A和设定阈值B之间,则根据当前帧图像的行人兴趣区域,直
    接生成新的行人外观类别;针对下一帧图像进行处理时,进入步骤S2;

    若置信度Y小于设定阈值B,则表示当前帧图像中的行人目标丢失,针对下一帧图
    像进行处理时,进入步骤S8;

    S8、利用图像边缘信息生成当前帧图像中可能存在行人目标的各个区域,然后进
    入步骤S9;

    S9、针对当前帧图像中可能存在行人目标的各个区域,分别提取方向梯度直方图
    特征,然后对方向梯度直方图特征进行二维傅里叶变换后得到当前帧图像中可能存在行人
    目标的各个区域所对应最终的特征图;其中本实施例中方向梯度直方图特征为通过加上汉
    明窗口去除行人边缘影响的。其中本实施例中方向梯度直方图特征在进行二维傅里叶变换
    之前与汉明窗口相乘来减缓行人的边缘效应;

    S10、根据当前帧图像中可能存在行人目标的各个区域所对应最终的特征图和各
    类别中心,通过核化相关滤波器分别预测行人目标的中心点以及置信度,并且从中选取出
    值最大的置信度Z;然后进入步骤S11;

    本步骤中核化相关滤波器的模型为:

    alphaf=yf./(xf".*xf"+lambda);

    xf"=featureMap";

    其中alphaf为当前帧图像的核化相关滤波器模型的系数,yf为二维高斯分布的傅
    里叶变换,featureMap"为当前帧图像中可能存在行人目标的各个区域所对应最终的特征
    图,lambda为正规化系数。

    本步骤中,通过核化相关滤波器预测的置信度为:

    responseij=max (real(ifft2(modelAlphafi.*(modelXfi.*featureMapj)));

    i=1,2,3…,N;j=1,2,3,…M;

    其中featureMapj为当前帧图像中可能存在行人目标的第j个区域所对应最终的
    特征图,N为类别中心总数,modelXfi为第i个类别中心的模型特征,modelAlphafi为第i个类
    别中心的模型系数,ifft2函数表示二维傅里叶反变换,real函数表示将二维复数数组转换
    成二位实数数组;responseij为根据当前帧图像中可能存在行人目标的第j个区域所对应最
    终的特征图和第i个类别中心,通过核化相关滤波器预测的置信度;

    本步骤中,从置信度response11,response12,…,response1M至responseN1,
    responseN2,…,responseNM中选取出值最大的置信度Z,通过核化相关滤波器预测的行人目
    标的中心点为置信度Z二维坐标。

    S11、将步骤S10中获取到的置信度Z与设定阈值A进行比较;

    若置信度Z大于设定阈值A,则预测得到置信度Z的最终的特征图对应的区域为当
    前帧图像中的行人兴趣区域,当前帧图像中行人外观所属类别即为根据核化相关滤波器预
    测得到置信度Z的类别中心对应的类别;此时根据当前帧图像的行人兴趣区域,利用均值平
    滑更新当前帧图像中行人外观所属类别的类别中心;针对下一帧图像进行处理时,进入步
    骤S2;

    若置信度Z小于设定阈值A,则表示当前帧图像中的行人目标未正确检测到,针对
    下一帧图像进行处理时,进入步骤S8。

    其中本实施例上述步骤S5、S7和S11中,根据当前帧图像的行人兴趣区域,利用均
    值平滑更新当前帧图像中行人外观所属类别的类别中心,则更新后的当前帧图像中行人外
    观所属类别的类别中心为:

    modelAlphaf"=(1-α)*modelAlphaf′+α*alphaf;

    modelXf"=(1-α)*modelXf′+α*xf;

    xf=featureMap;

    其中alphaf为当前帧图像的核化相关滤波器模型的系数,α为平滑系数,
    modelAlphaf′更新前当前帧图像中行人外观所属类别的类别中心的模型系数,
    modelAlphaf"更新后当前帧图像中行人外观所属类别的类别中心的模型系数,modelXf′为
    更新前当前帧图像中行人外观所属类别的类别中心的模型特征,modelXf"为更新后当前帧
    图像中行人外观所属类别的类别中心的模型特征,featureMap为当前帧图像的行人兴趣区
    域最终的特征图。

    本实施例上述步骤中正规化系数lambda均为0.01;平滑系数α为0.35~0.45。

    本实施例行人实时跟踪方法首先通过行人分类器检测到第一帧图像中的行人目
    标以获取到行人目标的初始位置以及行人兴趣区域,并且根据第一帧图像的行人兴趣区域
    生成行人外观初始类别以及类别中心;从第二帧图像开始,根据上一帧图像所属类别的类
    别中心并且通过核化相关滤波器预测置信度,根据置信度检测当前帧图像是否与上一帧图
    像所属类别是否相同,相同的情况下更新类别中心,在不同的情况下,则根据其他类别中心
    且通过核化相关滤波器预测置信度,然后根据该置信度检测当前帧图像是否与除上一帧图
    像所属类别外的其他类别相同,若相同,则更新该类别中心,若不同,则根据置信度的大小
    生成新的类别或定义为当前帧图像目标丢失,在当前帧图像目标丢失的情况下针对下一帧
    图像进行处理时,首先找到该帧图像中可能存在行人目标的各个区域,然后根据各个类别
    中心且通过核化相关滤波器预测置信度,根据得到的置信度检测出行人兴趣区域,并且通
    过预测的置信度检测出所有类别中是否有该帧图像所属的类别,若有,则表示行人目标检
    测到,则更新所属类别的类别中心,若无,则表示该帧图像中的行人目标未正确检测到,针
    对下一帧图像进行处理时继续如上述目标丢失时候下一帧图像的处理方式进行处理,直到
    检测到行人目标的帧图像??杉痉⒚鞣椒ㄖ?,核化相关滤波器算法根据行人兴趣区域和
    已经生成的类别中心,预测得到行人目标中心点和置信度,通过置信度实现快速聚类,相比
    传统的k值聚类(k-means)利用欧几里得距离对样本进行聚类需要离线训练的这种方式,本
    发明方法行人目标跟踪的实时性更高。

    上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的
    限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,
    均应为等效的置换方式,都包含在本发明的?;し段е?。

    关 键 词:
    一种 基于 快速 行人 实时 跟踪 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:一种基于快速聚类的行人实时跟踪方法.pdf
    链接地址://www.4mum.com.cn/p-6092855.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03