• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 25
    • 下载费用:30 金币  

    玩重庆时时彩赚到钱吗: 基于噻吩并异苯并吡喃不对称给电子单元的DA型聚合物光伏材料及其应用.pdf

    关 键 词:
    基于 噻吩 不对称 电子 单元 DA 聚合物 材料 及其 应用
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201611217512.9

    申请日:

    2016.12.26

    公开号:

    CN106674491A

    公开日:

    2017.05.17

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||实质审查的生效IPC(主分类):C08G 61/12申请日:20161226|||公开
    IPC分类号: C08G61/12; H01L51/42; H01L51/46 主分类号: C08G61/12
    申请人: 常州大学
    发明人: 朱卫国; 陶强; 张俊; 谭华; 王亚飞; 朱梦冰
    地址: 213164 江苏省常州市武进区滆湖路1号
    优先权:
    专利代理机构: 代理人:
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611217512.9

    授权公告号:

    ||||||

    法律状态公告日:

    2019.02.15|||2017.06.09|||2017.05.17

    法律状态类型:

    授权|||实质审查的生效|||公开

    摘要

    本发明涉及一类基于噻吩并异苯并吡喃不对称给体单元的D??A型聚合物光伏材料的合成,以及它们在聚合物光伏器件中的应用。其中,D??A型聚合物材料的推电子(D)单元为噻吩并异苯并吡喃衍生物,受电子(A)单元为苯并噻二唑及其氟代衍生物。这类聚合物可作为供体材料广泛应用于高效的溶液加工型聚合物太阳能电池。当器件的受体材料为富勒烯时,其本体异质结聚合物太阳能电池的最大能量转化效率和开路电压分别高达8.96%和0.85V。本发明实现了不对称给体单元聚合物光伏材料在聚合物太阳能电池中的高效能量转换。

    权利要求书

    1.一类基于噻吩并异苯并吡喃不对称给电子单元的D-A型聚合物光伏材料,其特征在
    于具有式I所示的分子结构。
    式I:

    其中,A为

    基团中一种;
    R独立地选自C8~C16烷基中一种;R’为H或独立地选自C8~C16烷基中一种。
    2.如权利要求1式I所述的D-A型聚合物光伏材料,其特征在于为下列分子结构中的一
    种(1-11)。

    3.权利要求1和2所述材料的应用,其特征在于以所述聚合物光伏材料为供体材料,与
    富勒烯衍生物(PC71BM)共混形成聚合物太阳能电池的光活化层及其聚合物太阳能电池器
    件。
    4.根据权利要求3所述材料的应用,其特征在于聚合物太阳能电池的所述材料与PC71BM
    共混质量比为1:2或1:1.5。

    说明书

    基于噻吩并异苯并吡喃不对称给电子单元的D-A型聚合物光伏材料及其应用

    技术领域

    本发明涉及有机聚合物太阳能电池领域,特别涉及了一类基于噻吩[3,2-c]并异
    苯并吡喃不对称给电子单元的D-A型聚合物光伏材料的合成及其在聚合物太阳能电池中的
    应用。

    技术背景

    在化石能源日益匮乏和环境亟待?;さ乃刂圃枷?,能源和环境问题已成为全球
    迫切需要解决的重点和难点问题。由于太阳能具有取之不尽、用之不竭,安全、无污染、没有
    地域限制等无可比拟的优势,太阳能的开发与应用,已成为全球绿色新能源研究的热点。其
    中,将太阳能转换成电能的太阳能电池技术是近年来太阳能开发与应用的重点研究方向。

    有机太阳能电池(OSCs)由于具有材料选择范围宽、结构易调节、制备工艺简单、器
    件易大面积柔性化等优点,已成为太阳能电池技术的主要发展方向,并获得快速的发
    展[1-6]。目前有机太阳能电池根据活性层中给体材料的不同,可分为聚合物太阳能电池
    (PSCs)和有机小分子太阳能电池(SMs-OSCs);根据活性层中电子受体材料的不同,又可以
    分为富勒烯太阳能电池材料和非富勒烯电池材料。其中,以富勒烯为电子受体材料,基于聚
    合物和小分子的本体异质结(BHJ)单层OSCs的能量转化效率分别达到了11.7%[7]和
    10.08%[8],基于聚合物和小分子的叠层OSCs的能量转化效率分别达到了11.83%[9]和
    10.1%[10]。以非富勒烯为电子受体的本体异质结单层太阳能电池效率达到了12%[11]。不管
    是富勒烯体系还是非富勒烯体系,要获得高效的光电转换效率,光活性层中的共轭给体材
    料(共轭聚合物或小分子)扮演着至关重要的角色。和小分子相比,共轭聚合物具有合成简
    单、成膜性优良以及载流子迁移率高等优点,但是其聚合物太能电池的光伏性能离实用化
    的要求(15%的光电转化效率)依然存在一定差距??⑿滦偷墓查罹酆衔锕夥宀牧辖?br />是有机太阳能电池发展的重点。

    共轭聚合物光伏给体材料的发展方向是围绕聚合物太阳能电池的光电转换效率
    和成本等瓶颈问题[12],展开光伏给体材料的分子设计与性能研究,揭示材料分子结构、器
    件结构、器件制备工艺与器件光伏性能的关系,推动共轭聚合物光伏给体材料在大面积溶
    液加工的柔性太阳能电池器件中的应用。

    附:主要参考文献

    [1].C.W.Tang,Appl.Phys.Lett.,1986,48,183.

    [2].B.O’Regan,M.Nature,1991,353,737.

    [3].H.Kallmann,M.Pope,J.Chem.Phys.,1959,30,585.

    [4].G.Yu,A.J.Heeger,Science,1995,270,1789.

    [5].(a)W.Li,C.Du,F.Li,Y.Zhou,M.Fahlman,Z.Bo,F.Zhang,Chem.Mater.,2009,
    21,5327.(b)G.Zhao,G.Wu,C.He,F.-Q.Bai,H.Xi,H.-X.Zhang,Y.Li,J.Phys.Chem.C,2009,
    113,2636.(c)J.Zhang,W.Z.Cai,F.Huang,E.G.Wang,C.M.Zhong,S.J.Liu,M.Wang,
    C.H.Duan,Y.Cao,Macromolecules,2011,44,894.(d)J.Chen,Y,Cao.,Acc.Chem.Res.,
    2009,42,1709.(e)L.J.Huo,X.Guo,S.Q.Zhang,Y.F.Li,J.H.Hou,Macromolecules,2011,
    44,4035.(f)Z.F.Li,Q.F.Dong,B.Xu,W.D.Cheng,S.Y.Yao,X.Y.Zhang,S.P.Wen,H.Li,
    Y.J.Dong,W.J.Tian,Sol.Energ.Mat.Sol.Cells,2012,98,343.

    [6].Y.M.Sun,G.C.Welch,W.L.Leong,C.J.Takacs,G.C.Bazan,A.J.Heeger,
    Nat.Mater.,2012,11,44.

    [7].J.B.Zhao,Y.K.Li,G.F.Yang,K.Jiang,H.Lin,H.Ade,W.Ma,H.Yan,
    Nat.Energy,2016,1,15027.

    [8].B.Kan,M.Li,Q.Zhang,F.Liu,X.Wan,Y.Wang,W.Ni,G.Long,X.Yang,H.Feng,
    Y.Zuo,M.Zhang,F.Huang,Y.Cao,T.P.Russell,Y.Chen,J.Am.Chem.Soc.,2015,137,3886-
    3893.

    [9].A.R.M.Yusoff,D.Kim,H.P.Kim,F.K.Shneider,W.J.Silv,J.Janga,Energy
    Environ.Sci.,2015,8,303-316.

    [10].Y.Liu,C.C.Chen,Z.Hong,J.Gao,Y.(M.)Yang,H.Zhou,L.Dou,G.Li,Y.Yang,
    Sci.Rep.,2013,3,3356-3356.

    [11].(a)S.S.Li,L.Ye,W.C.Zhao,S.Q.Zhang,S.Mukherjee,H.Ade,J.H.Hou,
    Adv.Mater.,2016,DOI:10.1002/adma.201602776.(b)W.C.Zhao,D.P.Qian,S.Q.Zhang,
    S.S.Li,O. F.Gao,J.H.Hou,Adv.Mater.,2016,28,4734–4739.

    [12].(a)K.Li,Z.Li,K.Feng,X.Xu,L.Wang and Q.Peng,J.Am.Chem.Soc.,2013,
    135,13549–13557.(b)C.Duan,A.Furlan,J.J.V.Franeker,R.E.M.Willems,M.M.Wienk and
    R.A.J.Janssen,Adv.Mater.,2015,27,4461–4468.

    发明内容

    针对目前性能优异的聚合物光伏材料品种少、高效光电转换器件的制备工艺复杂
    等问题,发明了一类新型的、含氧杂原子的噻吩[3,2-c]并异苯并吡喃不对称推电子(D)单
    元及其D-A型聚合物光伏材料。这类聚合物光伏材料的分子结构特点是以噻吩[3,2-c]并异
    苯并吡喃衍生物为推电子(D)单元,苯并噻二唑及其氟取代的苯并噻二唑衍生物为受电子
    (A)单元。利用不对称推电子单元的作用,调节聚合物分子内和分子间的相互作用,以及聚
    合物分子在光活性层的形貌,实现聚合物光伏材料在聚合物太阳能电池中的高效能量转
    换。

    本发明的目的在于提供一类具有成膜性优良的聚合物光伏材料,能够以简单的溶
    液加工工艺,获得高效聚合物太阳能电池。该类材料具有较低的最高占据的分子轨道
    (HOMO)能级,在300-800nm波长范围具有强和宽的吸收。当与富勒烯衍生物PC71BM共混时,其
    溶液加工型本体异质结聚合物太阳能电池器件,在不加任何添加剂、不进行任何热退火等
    处理的情况下,获得了较高的能量转化效率(PCE)和开路电压(Voc)。

    这类D-A型聚合物光伏材料的分子结构可以是下列分子的任何一种。


    上述D-A型聚合物光伏材料,包括下面任何衍生物:

    以5,5-二-(十二烷基)-7-(2-(噻吩基)-5-氢-噻吩[3,2-c]并异苯并吡喃(TC)为
    推电子基团,苯并噻二唑(BT)为吸电子基团,具有D-A结构的聚合物光伏材料PTCBT。

    以5,5-二-(十二烷基)-7-(2-(噻吩基)-5-氢-噻吩[3,2-c]并异苯并吡喃(TC)为
    推电子基团,单氟原子取代的苯并噻二唑(FBT)为吸电子基团,具有D-A结构的聚合物光伏
    材料PTCFBT。

    以5,5-二-(十二烷基)-7-(2-(噻吩基)-5-氢-噻吩[3,2-c]并异苯并吡喃(TC)为
    推电子基团,双氟原子取代的苯并噻二唑(2FBT)为吸电子基团,具有D-A结构的聚合物光伏
    材料PTC2FBT。

    为了得到上述聚合物光伏材料,本发明的合成方案如下:

    推电子单元5,5-二-(十二烷基)-7-(2-(噻吩基)-5-氢-噻吩[3,2-c]并异苯并吡
    喃的合成:2,5-二溴苯甲酸甲酯和2-(三丁基锡)-3-甲氧基噻吩在双(三苯基膦)二氯化钯
    催化下,通过控制原料投料比例,经Still交叉偶联得到单边偶联产物。将此产物在室温下
    由三溴化硼脱甲基后形成环内酯,该内酯衍生物在格氏试剂作用下开环形成烷基取代的苄
    醇化合物。在对甲基苯磺酸钠的脱水作用下,该苄醇衍生物生成烷基取代的7-溴-5-氢-噻
    吩[3,2-c]并异苯并吡喃。为了得到双锡取代的聚合物单体,将7-溴-5-氢-噻吩[3,2-c]并
    异苯并吡喃与2-(三丁基锡)噻吩经Still交叉偶联得到5,5-二(十二烷基)-7-(2-(噻吩
    基)-5-氢-噻吩[3,2-c]并异苯并吡喃,进而,-78℃下,在正丁基锂试剂和三丁基氯化锡的
    共同作用,合成得到含双烷基锡取代的5,5-二(十二烷基)-7-(2-(噻吩基)-5-氢-噻吩[3,
    2-c]并异苯并吡喃聚合物单体(M1)。

    D-A型聚合物光伏材料PTCBT的合成:单体M1与4,7-二溴-2,1,3-苯并噻二唑发生
    Still偶联聚合反应,合成得到聚合物PTCBT粗产品,经甲醇沉降,柱层析提纯,索氏提取洗
    涤,再沉降得到聚合物PTCBT纯产品。

    D-A型聚合物光伏材料PTCFBT的合成:单体M1与4,7-二溴-5-氟-2,1,3-苯并噻二
    唑发生Still偶联聚合反应,合成得到聚合物PTCFBT粗产品,经甲醇沉降,柱层析提纯,索氏
    提取洗涤,再沉降得到聚合物PTCFBT纯产品。

    D-A型聚合物光伏材料PTC2FBT的合成:单体M1与4,7-二溴-5,6-二氟-2,1,3-苯并
    噻二唑发生Still偶联聚合反应,合成得到聚合物PTC2FBT粗产品,经甲醇沉降,柱层析提
    纯,索氏提取洗涤,再沉降得到聚合物PTC2FBT纯产品。

    本发明的新型推电子单元5,5-二-(十二烷基)-7-(2-(噻吩基)-5-氢-噻吩[3,2-
    c]并异苯并吡喃与已公开的大多数给电子单元相比,其特点是:(1)氧原子的引入可以极大
    的增强推电子单元的偶极矩作用,有利于聚合物材料在给受体界面实现激子分离;(2)结构
    本身的不对称性可提高共轭分子主链电荷迁移作用,提高载流子迁移率;(3)选择不同长度
    的烷基链可以有效调节聚合物分子的溶解性和在光活性层中的分散性;(4)选择不同的推
    电子单元,分子中推受结构的存在,可调节分子的吸收光谱和电子轨道能级。因此,这类材
    料是一类很有发展前景的聚合物光伏材料。

    本发明的应用在于:将设计的聚合物光伏材料作为光活性层给体材料,与富勒烯
    衍生物PC71BM在不同比例下共混,制作聚合物太阳能电池器件,实现器件的高效光电转换。

    所述的有机聚合物太阳能电池器件包括氧化锡铟(ITO)导电玻璃阳极、阳极修饰
    层、光活性层、阴极。其中阳极修饰层为聚二氧乙基噻吩-聚苯乙烯磺酸盐(PEDOT/PSS,
    30nm)涂层;阴极为Ca(10nm)/Al(100nm)的沉积层;光活化层材料为本发明所述的聚合物光
    伏材料与PC71BM,其共混重量比为1:2。

    附图说明

    图1为本发明PTCBT的热失重曲线

    图2为本发明PTCBT氯苯溶液的紫外-可见吸收光谱

    图3为本发明PTCBT固体膜的紫外-可见吸收光谱

    图4为本发明PTCBT固体膜的循环伏安曲线

    图5为本发明PTCBT/PC71BM聚合物太阳能电池器件的J-V曲线

    图6为本发明PTCFBT的热失重曲线

    图7为本发明PTCFBT氯苯溶液的紫外-可见吸收光谱

    图8为本发明PTCFBT氯苯溶液不同温度的紫外-可见吸收光谱

    图9为本发明PTCFBT固体膜的紫外-可见吸收光谱

    图10为本发明PTCFBT固体膜的循环伏安曲线

    图11为本发明PTCFBT/PC71BM聚合物太阳能电池器件的J-V曲线

    图12为本发明PTCFBT/PC71BM聚合物太阳能电池器件的EQE曲线

    图13为本发明PTC2FBT的热失重曲线

    图14为本发明PTC2FBT氯苯溶液的紫外-可见吸收光谱

    图15为本发明PTC2FBT氯苯溶液不同温度的紫外-可见吸收光谱

    图16为本发明PTC2FBT固体膜的紫外-可见吸收光谱

    图17为本发明PTC2FBT固体膜的循环伏安曲线

    图18为本发明PTC2FBT/PC71BM聚合物太阳能电池器件的J-V曲线

    图19为本发明PTC2FBT/PC71BM聚合物太阳能电池器件的EQE曲线

    图20为本发明聚合单体M1的核磁氢谱图

    图21为本发明聚合单体M1的核磁碳谱图

    具体实施方式

    下面通过具体实施例对本发明作进一步说明,但这些具体实施方案不以任何方式
    限制本发明的?;し段?。

    实施例1

    双锡取代的5,5-二(十二烷基)-7-(2-(噻吩基)-5-氢-噻吩[3,2-c]并异苯并吡喃
    聚合物单体(M1)的合成,其合成路线如下图所示。



    1.1 2-(三丁基锡)-3-甲氧基噻吩的合成

    在250mL三口瓶中,将3-甲氧基噻吩(4.56g,40mmol)溶于80mL干燥的四氢呋喃中,
    磁力搅拌,-78℃下缓慢滴加正丁基锂(27.5mL,1.6M),-78℃下反应0.5h,室温反应2h。再
    在-78℃下一次性滴加三丁基氯化锡(14.3g,44mmol),室温反应5h。将反应液倒入100mL水
    中,用石油醚萃取三次,每次30mL,合并的有机层用饱和盐水洗涤三次,每次50mL。将有机层
    干燥、减压旋转蒸馏出有机溶剂,真空干燥,得到淡黄色液体(15.5g,98.0%)。1H NMR
    (400MHz,CDCl3)δ7.48(d,J=4.9Hz,1H),6.98(d,J=4.9Hz,1H),3.78(s,3H),1.63–1.50
    (m,6H),1.34-1.32(m,6H),1.15–1.04(m,6H),0.89(d,J=9.0Hz,9H).

    1.2 5-溴-2-(2-(3-甲氧基噻吩基)苯甲酸甲酯的合成

    在100mL单口瓶中,将2,5-二溴苯甲酸甲酯(2.91g,10.0mmol)、2-(三丁基锡)-3-
    甲氧基噻吩(2.0g,5.0mmol)、双(三苯基膦)二氯化钯200mg溶于60mL甲苯中,搅拌加热至80
    ℃,反应4h,冷却至室温。反应混合物直接减压旋干,剩余物以石油醚/二氯甲烷混合溶液为
    洗脱剂(v/v,3:1)进行柱层析分离,得无色液体1.3g,产率78.8%。1H NMR(400MHz,CDCl3)δ
    7.95(d,J=2.2Hz,1H),7.62(dd,J=8.3,2.2Hz,1H),7.36–7.23(m,2H),6.89(d,J=5.5Hz,
    1H),3.80(s,6H).

    1.3 7-溴-5-氢-噻吩[3,2-c]异苯并吡喃-5-酮的合成

    在250mL单口瓶中,将5-溴-2-(2-(3-甲氧基噻吩基)苯甲酸甲酯(1.5g,4.6mmol)
    溶于100mL二氯甲烷中,0℃下缓慢滴加三溴化硼0.5mL,室温反应过夜。倒入冰水中,用三氯
    甲烷萃取三次,每次50mL。合并的有机层通过旋转蒸发器蒸馏除去溶剂,剩余物以石油醚/
    二氯甲烷混合溶液(v/v,1:1)为洗脱剂,进行柱层析分离,得白色粉末1.36g,产率92.1%。
    1H NMR(400MHz,CDCl3)δ8.51(d,J=2.0Hz,1H),7.87(dd,J=8.4,2.0Hz,1H),7.49(dd,J=
    17.5,6.9Hz,2H),7.09(d,J=5.4Hz,1H),1.59(s,4H).

    1.4化合物5的合成

    在100mL三口瓶中,将7-溴-5-氢-噻吩[3,2-c]异苯并吡喃-5-酮(0.56g,2.0mmol)
    溶于40mL干燥的四氢呋喃中,氮气?;?。冰水浴下缓慢滴加新制的正十二烷基溴化镁格式
    试剂(10mL,8mmol)。室温反应8h。加水淬灭反应,有机层用稀盐酸溶液洗涤多次,干燥,通过
    旋转蒸发器蒸馏除去溶剂,剩余物以石油醚/二氯甲烷混合溶液(v/v,2:1)为洗脱剂,进行
    柱层析分离,得淡黄色液体0.8g,产率72.0%。1H NMR(400MHz,CDCl3)δ7.66(s,1H),7.43(d,
    J=8.2Hz,1H),7.24–7.18(m,1H),7.14(d,J=8.2Hz,1H),6.81–6.67(m,1H),6.30(s,1H),
    2.20(s,1H),1.84(s,4H),1.27(m,40H),0.91(dd,J=6.8,4.6Hz,6H).

    1.5 7-溴-5,5-二(正十二烷基)-5-氢-噻吩[3,2-c]异苯并吡喃的合成

    在100mL三口瓶中,加入7-溴-5,5-二(正十二烷基)-5-氢-噻吩[3,2-c]异苯并吡
    喃(0.8g,1.3mmol)、对甲苯硼酸钠0.4g、甲苯40mL,120℃下搅拌反应12h。直接减压蒸馏出
    溶剂,剩余物以石油醚为洗脱剂,进行柱层析分离,得无色粘稠液体0.69g,产率88.0%。1H
    NMR(400MHz,CDCl3)δ7.34(dd,J=8.2,1.9Hz,1H),7.15–7.02(m,2H),6.68(d,J=5.3Hz,
    1H),1.89(m,4H),1.45–1.12(m,40H),0.90(t,J=6.9Hz,6H).13C NMR(100MHz,CDCl3)δ
    152.49,135.21,130.53,127.79,127.62,123.18,122.38,119.33,113.33,85.38,39.24,
    31.95,29.90,29.65,29.60,29.48,29.38,23.68,22.72,14.15.

    1.6 5,5-二(正十二烷基)-7-(2-噻吩基)-5-氢-噻吩[3,2-c]异苯并吡喃的合成

    在100mL单口瓶中,加入7-溴-5,5-二(正十二烷基)-5-氢-噻吩[3,2-c]异苯并吡
    喃(0.69g,1.1mmol)、三丁基锡噻吩(0.42g,1.2mmol)、四(三苯基膦)合钯(110mg,10%
    mol)、甲苯40mL,110℃下反应5h。直接减压蒸馏出溶剂,剩余物以石油醚为洗脱剂,进行柱
    层析分离,无色粘稠液体0.58g,产率87.0%。1H NMR(400MHz,CDCl3)δ7.48(dd,J=8.0,
    1.8Hz,1H),7.30(dd,J=2.1,1.4Hz,1H),7.26(d,J=1.7Hz,1H),7.21(d,J=7.9Hz,1H),
    7.13–7.08(m,2H),6.71(d,J=5.3Hz,1H),2.08–1.82(m,4H),1.50–1.12(m,40H),0.90(t,J
    =6.9Hz,6H).13C NMR(100MHz,CDCl3)δ152.37,144.58,133.73,132.35,128.90,128.07,
    127.89,125.98,125.20,124.44,122.88,122.57,122.32,121.40,119.31,113.98,85.73,
    77.35,77.03,76.72,39.34,31.94,29.94,29.65,29.60,29.49,29.37,23.76,22.71,
    14.14,0.02.

    1.7双烷基锡取代的聚合单体M1的合成

    在100mL三口瓶中,将5,5-二(正十二烷基)-7-(2-噻吩基)-5-氢-噻吩[3,2-c]异
    苯并吡喃(0.56g,0.92mmol)溶于20mL干燥的四氢呋喃中,磁力搅拌,-78℃下缓慢滴加正丁
    基锂(2.4mL,3.7mmol,1.6M),-78℃下反应0.5h,室温反应2h。再在-78℃下一次性滴加三丁
    基氯化锡(1.2g,3.7mmol),室温反应5h。将反应液倒入100mL碳酸钾水溶液中,石油醚萃取
    三次,每次30mL,合并的有机层用碳酸钾水溶液洗涤三次,每次50mL。干燥后,将有机层减压
    蒸馏,剩余的淡黄色液体快速通过三乙胺处理过的柱层析硅胶柱,得无色液体(1.1g,
    98%)。1H NMR(400MHz,CDCl3)δ7.48(d,J=8.0Hz,1H),7.41(d,J=3.3Hz,1H),7.26–7.09
    (m,2H),6.75(s,1H),2.09–1.78(m,4H),1.75–1.54(m,18H),1.49(m,8H),1.43–1.20(m,
    53H),1.12-1.08(m,10H),1.02–0.74(m,38H).13C NMR(100MHz,CDCl3)δ153.64,150.31,
    146.79,136.41,135.28,133.18,132.18,127.91,126.82,125.10,123.63,122.22,121.63,
    119.28,100.00,85.73,79.65,44.60,39.44,31.92,31.13,30.00,29.63,29.52,29.35,
    29.28,28.98,28.93,27.56,27.41,27.26,23.82,22.69,14.11,13.72,13.66,10.88,
    8.77,-0.01.

    实施例2


    聚合物PTCBT的合成

    在25mL两口瓶中,依次加入双烷基锡取代的聚合单体M1(243mg,0.205mmol),4,7-
    二溴-2,1,3苯并噻二唑(58mg,0.2mmol),三(二亚苄基丙酮)二钯(5mg),三(邻甲苯基)磷
    (10mg),无氧甲苯6mL。在氮气流?;は?,控温110℃反应24h。注射器注入溴苯(0.2mL)作为
    封端剂,110℃反应2h。自然冷却,加入10mL甲苯稀释反应液,滴加到100mL甲醇中沉降,抽
    滤,固体物溶于氯苯,快速通过硅胶柱分离、甲醇沉降。收集的固体物依次用甲醇、乙醚、三
    氯甲烷进行索氏提取,将三氯甲烷提取液浓缩,滴入甲醇中沉降。抽滤、收集固体物,真空干
    燥。得到黑色固体90mg,产率58%。

    实施例3聚合物PTCFBT的合成


    在25mL两口瓶中,依次加入双烷基锡取代的聚合单体M1(243mg,0.205mmol),4,7-
    二溴-5-氟-2,1,3苯并噻二唑(58mg,0.2mmol),三(二亚苄基丙酮)二钯(5mg),三(邻甲苯
    基)磷(10mg),无氧甲苯6mL。在氮气流?;は?,控温110℃反应24h。注射器注入溴苯(0.2mL)
    作为封端剂,110℃反应2h。自然冷却,加入10mL甲苯稀释反应液,滴加到100mL甲醇中沉降,
    抽滤,固体物溶于氯苯,快速通过硅胶柱分离、甲醇沉降。收集的固体物依次用甲醇、乙醚、
    三氯甲烷进行索氏提取,将三氯甲烷提取液浓缩,滴入甲醇中沉降。抽滤、收集固体物,真空
    干燥,得到黑色固体106mg,产率68%。

    实施例4聚合物PTC2FBT的合成


    在25mL两口瓶中,依次加入烷基锡取代的聚合单体M1(243mg,0.205mmol),4,7-二
    溴-5,6-二氟-2,1,3苯并噻二唑(58mg,0.2mmol),三(二亚苄基丙酮)二钯(5mg),三(邻甲苯
    基)磷(10mg),无氧甲苯6mL。在氮气流?;は?,控温110℃反应24h。注射器注入溴苯(0.2mL)
    作为封端剂,110℃反应2h。自然冷却,加入10mL甲苯稀释反应液,滴加到100mL甲醇中沉降,
    抽滤,固体物溶于氯苯,快速通过硅胶柱分离、甲醇沉降。收集的固体物依次用甲醇、乙醚、
    三氯甲烷进行索氏提取,将三氯甲烷提取液浓缩,滴入甲醇中沉降。抽滤、收集固体物,真空
    干燥,得到黑色固体110mg,产率70%。

    实施例5

    基于噻吩并异苯并吡喃不对称推电子单元的D-A型聚合物光伏材料的性能表征及
    其光伏光器件的制作和性能测试

    新型噻吩并异苯并吡喃衍生物受体单元及其合成过程中所有中间体的1H NMR和
    13C NMR光谱通过Bruker Dex-400NMR仪器测定,D-A型聚合物光伏材料的紫外-可见吸收光
    谱通过HP-8453紫外-可见光谱仪测定。

    基于噻吩并异苯并吡喃不对称推电子单元的D-A型聚合物光伏材料的有机太阳能
    电池器件包括:氧化锡铟(ITO)导电玻璃阳极层、聚苯乙烯磺酸盐(PEDOT/PSS)阳极修饰层、
    光活性层和阴极。光活性层由所述聚合物光伏材料和PC71BM共混构成,其共混比例为1:2。阴
    极由Ca(10nm)/Al(100nm)层构成。

    实施例6

    PTCBT的光物理性能及其聚合物太阳能电池器件性能

    PTCBT的热失重曲线如图1所示。其热失重5%时的热分解温度为385℃。

    PTCBT在氯苯溶液中的紫外吸收光谱如图2所示。该聚合物在300-750nm表现了强
    烈的吸收。其中,400nm的吸收峰为分子主链π-π*的跃迁,600nm左右的吸收峰为分子内噻吩
    并异苯并吡喃推电子单元(TC)到苯并噻二唑受体单元(BT)的电荷转移(ICT)跃迁吸收峰。
    PTCBT在固体膜中的紫外吸收光谱如图3所示。与溶液的吸收光谱相比,吸收峰出现明显的
    红移,并且在610nm左右出现了一个振动吸收肩峰,这是由于固体膜中分子堆积所致。固体
    膜的低能吸收峰的末端位置(λonset)为750nm,根据计算公式Eg=1240/λonset,计算出该材料
    的光学带隙为1.65eV。

    聚合物PTCBT在固体膜中的循环伏安曲线如图4所示,呈现了可逆的氧化还原峰。
    参比二茂铁的氧化还原电位,其氧化和还原峰分别位于0.62和-1.59V处,根据计算公式
    EHOMO=-(Eox+4.80)eV和ELUMO=-(Ered+4.80)eV,得出聚合物PTCBT材料的HOMO和LUMO能级分
    别为-5.42和-3.21eV,电化学带隙为2.21eV。

    在不同的PTCBT/PC71BM混合比例下,PFTCBT/PC71BM光伏器件的J-V曲线如图11所
    示。当混合比例为1:2时,器件表现了最好的光伏性能。器件的短路电流为10.68mA/cm2,开
    路电压为0.76V,填充因子为46.5%,光伏效率为3.76%。

    实施例7

    PTCFBT的光物理性能及其聚合物太阳能电池器件性能

    PTCFBT的热失重曲线如图6所示。其热失重5%时的热分解温度为368℃。

    PTCFBT在氯苯溶液中的紫外吸收光谱如图7所示。该聚合物在300-750nm表现了强
    烈的吸收。其中400nm的吸收峰为分子主链π-π*的跃迁;600nm左右的吸收峰为分子内噻吩
    并异苯并吡喃推电子单元(TC)到氟代苯并噻二唑受体单元(FBT)的电荷转移(ICT)跃迁吸
    收峰;680nm左右的吸收峰为分子的聚集吸收峰。为了研究PTCFBT在氯苯溶液的聚集行为,
    不同温度的紫外-可见吸收曲线如图8所示,测试结果发现随着温度的升高,在680nm处的吸
    收峰明显减弱,在温度达到85℃时此峰基本消失。PTCFBT在固体膜中的紫外吸收光谱如图9
    所示。与溶液的吸收光谱相比,吸收峰出现明显的红移,并且在680nm左右出现了一个振动
    吸收肩峰,这是由于固体膜中分子堆积所致。固体膜的低能吸收峰末端位置(λonset)为
    754nm,根据计算公式Eg=1240/λonset,计算出该材料的光学带隙为1.64eV。

    PTCFBT在固体膜中的循环伏安曲线如图10所示。呈现了可逆的氧化还原峰。参比
    二茂铁的氧化还原电位,其氧化和还原峰分别位于0.60和-1.55V处,根据计算公式EHOMO=-
    (Eox+4.80)eV和ELUMO=-(Ered+4.80)eV,由此得出聚合物PTCFBT材料的HOMO和LUMO能级分别
    为-5.40和-3.25eV,电化学带隙为2.15eV。

    在不同的PTCFBT/PC71BM混合比例下,PFTCBT/PC71BM光伏器件的J-V曲线如图11所
    示。当混合比例为1:1.5时,器件表现了最好的光伏性能,其短路电流为15.05mA/cm2,开路
    电压为0.75V,填充因子为59.6%,光伏效率为6.72%。

    当PTCFBT/PC71BM混合比例为1:1.5时,该光活性层的EQE曲线图如图12所示。光活
    性层在300–780nm范围都有较好的光响应,外量子效率在400-700nm范围都超过了60%,其
    中500nm左右处的最大EQE值为70%。

    实施例8

    PTC2FBT的光物理性能及其聚合物太阳能电池器件性能

    PTC2FBT的热失重曲线如图13所示。其热失重5%时的热分解温度为396℃。

    PTC2FBT在氯苯溶液中的紫外吸收光谱如图14所示。该聚合物在300-750nm表现了
    强烈的吸收。其中400nm的吸收峰为分子主链π-π*的跃迁;600nm左右的吸收为分子内噻吩
    并异苯并吡喃推电子单元(TC)到二氟代苯并噻二唑受体单元(2FBT)的电荷转移(ICT)跃迁
    吸收峰;680nm左右的吸收峰为分子聚集吸收峰。为了研究PTC2FBT在氯苯溶液的聚集行为,
    不同温度的紫外吸收曲线如图15所示,结果发现随着温度的升高,在680nm处的吸收峰明显
    减弱,当温度达到75℃时此峰基本消失。PTC2FBT在固体膜中的紫外吸收光谱如图16所示。
    与溶液的吸收光谱相比,吸收峰出现明显的红移,并且在680nm左右出现了一个明显振动吸
    收肩峰,这是由于固体膜中分子堆积所致。固体膜的低能吸收峰末端位置(λonset)为750nm,
    根据计算公式Eg=1240/λonset,计算出该材料的光学带隙为1.65eV。

    PTC2FBT在固体膜中的循环伏安曲线如图17所示。呈现了可逆的氧化还原峰,参比
    二茂铁的氧化还原电位,其氧化和还原峰分别位于0.69和-1.47V处,根据计算公式EHOMO=-
    (Eox+4.80)eV和ELUMO=-(Ered+4.80)eV,由此得出聚合物PTC2FBT材料的HOMO和LUMO能级分
    别为-5.49和-3.33eV,电化学带隙为2.16eV。

    在不同的PTC2FBT/PC71BM混合比例下,PTC2FBT/PC71BM光伏器件的J-V曲线如图18
    所示。当混合比例为1:1.5时,光伏器件表现出了最好的光伏性能。其短路电流为15.15mA/
    cm2,开路电压为0.85V,填充因子为69.9%,光伏效率为8.96%。

    当PTC2FBT/PC71BM的混合比例为1:1.5时,其光活性层的EQE曲线图如图19所示。光
    活性层在300–750nm范围都有较好的光响应,外量子效率在400-700nm范围都超过了60%,
    在500nm左右处有最大EQE值,为80%。

    尽管结合了优选实施例对本发明进行了说明,但本发明并不局限于上述实施例,
    应当理解所附权利要求概括了本发明的范围。在本发明构思的指导下,本领域的技术人员
    应当意识到,对本发明的各实施例方案所进行的一定的改变,都将被本发明的权利要求书
    的精神和范围所覆盖。

    关于本文
    本文标题:基于噻吩并异苯并吡喃不对称给电子单元的DA型聚合物光伏材料及其应用.pdf
    链接地址://www.4mum.com.cn/p-6083066.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 北京时时彩开奖 线上娱乐城k7 做桃酥赚钱吗 极速快乐十分计划软件手机版下载 四川金7乐18102775 单机三张牌下载 91彩票网址 丫丫湘西麻将官网 彩票控-湖南快乐十分 棋牌10元可提现的棋牌 信主人买彩票 7星彩怎么看中奖 彩票大赢家老时时彩 麻将app排行 黑龙江快乐十分走势图号码分布最近 澳洲幸运8计划