• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 9
    • 下载费用:30 金币  

    重庆时时彩一星万能码: 一种基于修正的多尺度RETINEX算法对医疗图像进行增强的方法.pdf

    关 键 词:
    一种 基于 修正 尺度 RETINEX 算法 医疗 图像 进行 增强 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201710007475.7

    申请日:

    2017.01.05

    公开号:

    CN106683061A

    公开日:

    2017.05.17

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||专利申请权的转移IPC(主分类):G06T 5/00登记生效日:20181026变更事项:申请人变更前权利人:南京觅踪电子科技有限公司变更后权利人:卡本(深圳)医疗科技有限公司变更事项:地址变更前权利人:210000 江苏省南京市马台街141号3号楼403室变更后权利人:518000 广东省深圳市南山区粤海街道科苑路15号科兴科学园B1栋701-72|||著录事项变更IPC(主分类):G06T 5/00变更事项:发明人变更前:王晓芳变更后:章世平 王晓芳|||实质审查的生效IPC(主分类):G06T 5/00申请日:20170105|||公开
    IPC分类号: G06T5/00; G06T5/40; G06T5/50; G06T11/00 主分类号: G06T5/00
    申请人: 南京觅踪电子科技有限公司
    发明人: 王晓芳
    地址: 210000 江苏省南京市马台街141号3号楼403室
    优先权:
    专利代理机构: 北京思创大成知识产权代理有限公司 11614 代理人: 王尧
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201710007475.7

    授权公告号:

    ||||||||||||

    法律状态公告日:

    2019.03.15|||2018.11.16|||2018.09.28|||2017.06.09|||2017.05.17

    法律状态类型:

    授权|||专利申请权、专利权的转移|||著录事项变更|||实质审查的生效|||公开

    摘要

    一种基于修正的多尺度retinex算法对医疗图像进行增强的方法,它包括以下步骤:S1、采用多种医疗图像采集设备获取同一病灶或感兴趣部位的图像序列;S2、采用图像增强方法分别对前述各种医疗图像采集设备获取的图像序列进行处理;S3、对增强后的所有图像序列进行像素级融合获取融合后的图像序列;S4、采用图像增强方法对融合后的图像序列进行处理,得到成品图像序列。本发明通过改进的retinex算法,增加了边缘强度,有利于人体内相近器官的区分,将肿瘤和脏器进一步分别开来,增加了病灶或感兴趣部位的可视性,有助于临床诊断、放射治疗计划的制定和评价。

    权利要求书

    1.一种基于修正的多尺度retinex算法对医疗图像进行增强的方法,其特征是它包括
    以下步骤:
    S1、采用多种医疗图像采集设备获取同一病灶或感兴趣部位的图像序列;
    S2、采用图像增强方法分别对前述各种医疗图像采集设备获取的图像序列进行处理;
    S3、对增强后的所有图像序列进行像素级融合获取融合后的图像序列;
    S4、采用图像增强方法对融合后的图像序列进行处理,得到成品图像序列。
    2.根据权利要求1所述的基于修正的多尺度retinex算法对医疗图像进行增强的方法,
    其特征是所述的步骤S2中,图像增强算法具体为:
    S2.1、对步骤S1中获取的各图像序列的灰度图像进行处理,将各像素点灰度值的数据
    类型转化成float浮点型;
    S2.2、对各图像序列的灰度图像进行增强处理,具体步骤如下:
    S2.2-1、获取前述灰度图像来源图像的位数,如果是8位,则灰度范围是0~255,如果是
    16位,则灰度范围是0~4095,在各自对应的整个灰度范围内选取n个尺度因子σ,分别建立
    对应的高斯环境函数:k表示尺度因子σ即环境函数的编
    号,k=1、2、...n;
    S2.2-2、采用下述公式分别各图像序列中的图像进行处理,得到各自增强后的输出图
    像RMi(x,y);

    其中:i表示任一医疗图像采集设备获取的图像序列中的图像编号;N表示对应医疗图
    像采集设备获取的图像序列中的图像总数,k表示环境函数的编号,n表示环境函数的个数;
    Wk表示与Fk对应的权重系数,Ii(x,y)是第i幅图像的灰度;δ是修正系数,*代表卷积操作;
    log为对数;Fk(x,y)为步骤S2.2-1 所建立的高斯环境函数。
    3.根据权利要求2所述的基于修正的多尺度retinex算法对医疗图像进行增强的方法,
    其特征是所述的步骤S2中,图像增强算法还包括:
    S2.3、对各种医疗图像采集设备增强后的输出图像RMi(x,y)分别进行图像灰度矫正,具
    体为:
    S2.3-1、计算输出图像RMi(x,y)的灰度均值avg和标准方差div;
    S2.3-2、分别计算出图像RMi(x,y)截断拉伸的最大值和最小值;

    S2.3-3、计算出图像RMi(x,y)的平均强度做为偏移量offset,采用下述公式对图像RMi
    (x,y)的直方图进行拉伸;

    S2.3-4、对拉伸后的直方图,将所有横坐标点的灰度值乘以对应位置的纵坐标值,然后
    进行求和,除以图像总点数,得到拉伸后图像直方图的重心;
    用低于该重心的所有灰度即横坐标点数值乘以相应纵坐标值即点数后累计求和,除以
    图像总点数,得到下限阈值;
    用高于该重心的所有灰度即横坐标点数值乘以相应纵坐标值即点数后累计求和,除以
    图像总点数,得到上限阈值;
    将前述上限阈值和下限阈值带入步骤S2.3-3中,作为截断拉伸的最大值和最小值,再
    次对图像直方图进行线性拉伸。
    4.根据权利要求3所述的基于修正的多尺度retinex算法对医疗图像进行增强的方法,
    其特征是所述的步骤S2.3-2和S2.3-3之间,还包括先用gamma拉伸对输出图像RMi(x,y)做处
    理,使得暗部的对比度得以增强,亮部的对比度受到抑制。
    5.根据权利要求3所述的基于修正的多尺度retinex算法对医疗图像进行增强的方法,
    其特征是S2.3-2中,α为比例系数,取值1.5~3。
    6.根据权利要求3所述的基于修正的多尺度retinex算法对医疗图像进行增强的方法,
    其特征是所述的步骤S2中,图像增强算法还包括:
    S2.4、对灰度矫正后的输出图像进行边缘增强,具体为:
    S2.4-1、采用5×5的高斯模板对输出图像以像素为单位进行滑动邻域操作,得到经过
    高斯模糊的图像矩阵;
    S2.4-2、然后用输出图像RMi(x,y)的图像矩阵减去经过高斯模糊后的图像矩阵,得到图
    像的边缘矩阵,给该边缘矩阵乘以调整参数,得到增强的边缘矩阵;
    S2.4-3、将前述增强的边缘矩阵与输出图像RMi(x,y)的矩阵相加,得到经过边缘增强的
    图像。
    7.根据权利要求6所述的基于修正的多尺度retinex算法对医疗图像进行增强的方法,
    其特征是滑动邻域操作具体为:利用滑动邻域对灰度图像做高斯模糊,邻域块空白的地方
    补0,对输入图形的每一个像素,指定的滑动邻域操作决定输出图像相应的像素值;即每当
    指定的操作从图像矩阵的一个位置转移到另一个位置时,滑动邻域也以相同的方向运动。
    8.根据权利要求6所述的基于修正的多尺度retinex算法对医疗图像进行增强的方法,
    其特征是调整参数的取值大于1。

    说明书

    一种基于修正的多尺度retinex算法对医疗图像进行增强的方法

    技术领域

    本发明涉及医疗图像处理领域,尤其是加强多源医学图像的成像结果并适用于在
    像素级精准融合的图像显示方法,具体地说是一种能够增加病灶或感兴趣部位的可视性,
    有助于临床诊断、放射治疗计划的制定和评价的基于修正的多尺度retinex算法对MR和CT
    图像进行增强的方法。

    背景技术

    随着医学、计算机技术及生物工程技术的发展,医学影像为临床诊断提供了多种
    模态的医学图像,如CT(计算机X线断层扫描)、MRI(磁共振成像)、SPECT(单光子发射计算机
    断层成像)、PET(正电子发射计算机断层扫描)、DSA(数字减影血管造影技术)、超声图像、电
    阻抗图像等。

    不同的医学图像提供了相关脏器的不同信息,比如CT图像具有很高的分辨力骨骼
    成像的能力,非常清晰,对病灶的定位提供了良好的参照,但对病灶本身的显示就较差。MRI
    虽然它空间分辨力比不上CT图像但是它对软组织成像清晰,有利于病灶范围的确定,可是
    它又缺乏刚性的骨组织作为定位参照。而PET尽管提供了脏器的新陈代谢功能信息,但对解
    剖结构的描画却很差。而MRI、CT、X射线成像对人体解剖结构描画得很好,却缺乏人体的功
    能信息??杉煌L囊窖枷穸加懈髯缘挠湃钡?。如果我们能把它们之间的互补信息
    综合在一起,充分显示形态成像方法的分辨力高、定位准确这一优势,克服功能成像中空间
    分辨力和组织对比分辨力低的缺点,最大限度地挖掘影像信息把它们作为一个整体来表
    达,那么在实际临床应用中,就能为医生提供所需要的足够信息,以便了解病变组织或器官
    的综合信息,从 而作出准确的诊断或制订出合适的治疗方案。

    经典的色彩视觉理论认为:人眼的色彩感觉主要取决于光的波长,不同频率的光
    会给人不同的色彩感觉,物体的颜色是由物体反射光的频率和强度决定的.然而,美国物理
    学家Edwin Land在20世纪50年代发现有些现象是传统的色彩理论无法解释的,经过近20年
    的科学实验和分析,Land认为在视觉信息的传导过程中人类的视觉系统对信息进行了某种
    处理,去除了光源强度和照射不均匀等一系列不确定的因素,而只保留了反映物体本质特
    征的信息,如反射系数等.当这些描述物体本质特征的相关信息传递到大脑皮层后,经过更
    为复杂的信息处理,才最终形成人的视觉.基于这样的认识,1977年Edwin Land首次提出了
    一种被称为Retinex的色彩理论.Retinex这个词本身就是由视网膜Retina和大脑皮层
    Cortex这两个词组合构成的,于是Retinex理论又被称为视网膜大脑皮层理论。

    Land首先提出了Retinex作为人眼感知亮度和色度的视觉模型,其定义理想的图
    像f(x,y)为:

    f(x,y)=r(x,y)×i(x,y)

    即一幅图像f(x,y)可以用环境亮度函数i(x,y)和物体反射函数r(x,y)的乘积来
    表示?;肪沉炼群枋鲋芪Щ肪车牧炼?,与物体无关;而物体反射函数是指物体反射能
    力,与照明无关,它包含了景物的细节信息.基于这种模型,得到的环境亮度函数是一种变
    化缓慢的图像低频信息;而反射函数则包含着图像中的大部分高频细节信息。

    但是,上述单尺度Retinex处理方法无法对图像所有灰度范围取得一致的增强效
    果,在医学图像上,简单应用该方法,无法获取所需的组织信息和病灶特征。

    发明内容

    本发明的目的是针对人体解剖学成像和功能性成像采用不同工作原理, 对人体
    骨骼和软组织成像各有优缺点的问题,提出一种基于修正的多尺度retinex算法对医疗图
    像进行增强的方法。该方法可以加强多源医学图像的成像结果,并适用于在像素级精准融
    合后再次增强,增加了病灶或感兴趣部位的可视性,有助于临床诊断、放射治疗计划的制定
    和评价。

    本发明的技术方案是:

    一种基于修正的多尺度retinex算法对医疗图像进行增强的方法,它包括以下步
    骤:

    S1、采用多种医疗图像采集设备获取同一病灶或感兴趣部位的图像序列;

    S2、采用图像增强方法分别对前述各种医疗图像采集设备获取的图像序列进行处
    理;

    S3、对增强后的所有图像序列进行像素级融合获取融合后的图像序列;

    S4、采用图像增强方法对融合后的图像序列进行处理,得到成品图像序列。

    本发明的步骤S2中,图像增强算法具体为:

    S2.1、对步骤S1中获取的各图像序列的灰度图像进行处理,将各像素点灰度值的
    数据类型转化成float(浮点)型;

    S2.2、对各图像序列的灰度图像进行增强处理,具体步骤如下:

    S2.2-1、S2.2-1、获取前述灰度图像来源图像的位数,如果是8位,则灰度范围是0
    ~255,如果是16位,则灰度范围是0~4095,在各自对应的整个灰度范围内选取n个尺度因
    子σ,分别建立对应的高斯环境函数: k表示尺度因子σ即
    环境函数的编号,k=1、2、...n;S2.2-2、采用下述公式分别各图像序列中的图像进行处理,
    得到各自增强后的输出图像RMi(x,y);


    其中:i表示任一医疗图像采集设备获取的图像序列中的图像编号;N表示对应医
    疗图像采集设备获取的图像序列中的图像总数,k表示环境函数的编 号,n表示环境函数的
    个数;Wk表示与Fk对应的权重系数,Ii(x,y)是第i幅图像的灰度;δ是修正系数(范围是0-
    4095),*代表卷积操作;log为对数;Fk(x,y)为步骤S2.2-1所建立的高斯环境函数;(本发明
    采用高斯函数作为环境函数。其中,卷积操作通过计算机的离散傅里叶变换和反变换实现。
    实质是将空间域的数学操作变换到频率域简化,然后反变换回来。)

    本发明的步骤S2中,图像增强算法还包括:

    S2.3、对各种医疗图像采集设备增强后的输出图像RMi(x,y)分别进行图像灰度矫
    正,具体为:

    S2.3-1、计算输出图像RMi(x,y)的灰度均值avg和标准方差div;

    S2.3-2、分别计算出图像RMi(x,y)截断拉伸的最大值和最小值;


    S2.3-3、计算出图像RMi(x,y)的平均强度做为偏移量offset,采用下述公式对图像
    RMi(x,y)的直方图进行拉伸;


    S2.3-4、采用步骤(b)的方法进行重心判定,得到拉伸后图像直方图的重心;

    用低于该重心的所有灰度即横坐标点数值乘以相应纵坐标值即点数后累计求和,
    除以图像总点数,得到下限阈值;

    用高于该重心的所有灰度即横坐标点数值乘以相应纵坐标值即点数后累计求和,
    除以图像总点数,得到上限阈值;

    将前述上限阈值和下限阈值带入步骤S2.3-3中,作为截断拉伸的最大值和最小
    值,再次对图像直方图进行线性拉伸。

    本发明的步骤S2.3-2和S2.3-3之间,还包括先用gammar拉伸对输出图 像RMi(x,y)
    做处理,使得暗部的对比度得以增强,亮部的对比度受到抑制。

    本发明的S2.3-2中,α为比例系数,取值1.5~3。

    本发明的步骤S2中,图像增强算法还包括:

    S2.4、对灰度矫正后的输出图像进行边缘增强,具体为:

    S2.4-1、采用5×5的高斯模板对输出图像以像素为单位进行滑动邻域操作,得到
    经过高斯模糊的图像矩阵;

    S2.4-2、然后用输出图像RMi(x,y)的图像矩阵减去经过高斯模糊后的图像矩阵,得
    到图像的边缘矩阵,给该边缘矩阵乘以调整参数,得到增强的边缘矩阵;

    S2.4-3、将前述增强的边缘矩阵与输出图像RMi(x,y)的矩阵相加,得到经过边缘增
    强的图像。

    本发明的滑动邻域操作具体为:利用滑动邻域对灰度图像做高斯模糊,邻域块空
    白的地方补0,对输入图形的每一个像素,指定的滑动邻域操作决定输出图像相应的像素
    值;即每当指定的操作从图像矩阵的一个位置转移到另一个位置时,滑动邻域也以相同的
    方向运动。

    本发明的调整参数的取值大于1。

    本发明的有益效果:

    本发明通过加强人体器官不同灰阶的细节,将相近器官更好的区别开来,提升了
    人体骨骼、脏器以及病变结构的对比度。在灰度拉伸阶段运算速度较快。

    由于医学图像标准DICOM的灰阶比较多,本发明通过计算直方图面积和重心,更好
    选择了多尺度因子,还原了人体器官不同灰阶的细节,提升了骨骼、脏器和病变结构对比
    度,有利于将人体内的病灶和解剖学结构与背景区别开来。

    本发明通过改进的retinex算法,增加了边缘强度,有利于人体内相近器官的区
    分,将肿瘤和脏器进一步分别开来?;叶壤焓褂胓amma拉伸和阈值 选定的线性拉伸,运算
    速度较快,更加有利于医学的灰度图进一步增加对比度。

    具体实施方式

    下面结合实施例对本发明作进一步的说明。

    一种基于修正的多尺度retinex算法对医疗图像进行增强的方法,它包括以下步
    骤:

    S1、采用多种医疗图像采集设备获取同一病灶或感兴趣部位的图像序列;

    S2、采用图像增强方法分别对前述各种医疗图像采集设备获取的图像序列进行处
    理;

    S3、对增强后的所有图像序列进行像素级融合获取融合后的图像序列;

    S4、采用图像增强方法对融合后的图像序列进行处理,得到成品图像序列。

    本发明的步骤S2中,图像增强算法具体为:

    S2.1、对步骤S1中获取的各图像序列的灰度图像进行处理,将各像素点灰度值的
    数据类型转化成float型;

    S2.2、对各图像序列的灰度图像进行增强处理,具体步骤如下:

    S2.2-1、获取前述灰度图像来源图像的位数,如果是8位,则灰度范围是0~255,如
    果是16位,则灰度范围是0~4095,在各自对应的整个灰度范围内选取n个尺度因子σ,分别
    建立对应的高斯环境函数:k表示尺度因子σ即环境函数的
    编号,k=1、2、...n;

    尺度因子选取方式如下,以n=5为例;

    例如,如果以“面积占比”和“重心判定”方式选择,如下所述:

    (a)、获取灰度图像的直方图,沿直方图中横轴方向从左往右获取起点至横坐标对
    应位置处的灰度面积,除以直方图的总灰度面积得到面积占比,在面积占比达到设定比例
    A1、A2时,选取对应比例的横坐标点作为第一、 二个尺度因子;(横轴为0~4095灰度,纵轴
    为点数。我们设每个灰度的底边长为1,乘以纵轴数值为该灰度面积。除以图像点数为面积
    占比。然后,在面积占比达到一定数值时,以20%,40%为例选取两个横坐标点作为第一、二
    个尺度因子。)

    (b)在灰度图像的直方图中,将所有横坐标点的灰度值乘以对应位置的纵坐标值,
    然后进行求和,除以图像总点数,得出图像重心作为第三个尺度因子;(第三个尺度因子选
    择比较特殊,采用的是“重心判定”的方法,先用每个横坐标灰度乘以该坐标下的纵坐标值,
    求出0~4095范围内的总和(实际计算中要把横坐标值加一位,也就是1~4096),然后除以
    图像总点数,得出的数值即为图像重心。)

    (c)、在灰度图像的直方图中,沿直方图中横轴方向从右往左获取起点至横坐标对
    应位置处的灰度面积,除以直方图的总灰度面积得到面积占比,在面积占比达到设定比例
    A3、A4时,选取对应比例的横坐标点作为第四、五个尺度因子;

    在实际工程环境下,可以采用控件的方法目视不同尺度因子选择产生的增强效
    果,以最优化输出结果;A1的范围是15%-25%,;A2的范围是35-45%;A3的范围是35%-
    45%;A4的范围是15-25%。

    图像F(x,y)与高斯函数卷积的本质在于特殊灰阶段通透滤波。高斯滤波器的特
    性。

    S2.2-2、采用下述公式分别各图像序列中的图像进行处理,得到各自增强后的输
    出图像RMi(x,y);(用来控制环境函数范围的尺度;R Mi(x,y)是综合i幅图像的多尺度
    Retinex算法的输出结果.实验表明对于医疗图像,在平衡负载的前提下,为图像序列多选
    取几个尺度,赋予每个尺度经验权重,可以取得较好增强效果)


    其中:i表示任一医疗图像采集设备获取的图像序列中的图像编号;N表示对应医
    疗图像采集设备获取的图像序列中的图像总数,k表示环境函数的编号;Wk表示与Fk对应的
    权重系数,Ii(x,y)是第i幅图像的灰度;δ是修正系数(范围是0-4095),*代表卷积操作;log
    为对数;Fk(x,y)为步骤S2.2-1所建立的高斯环境函数;(本发明采用高斯函数作为环境函
    数。其中,卷积操作通过计算机的离散傅里叶变换和反变换实现。实质是将空间域的数学操
    作变换到频率域简化,然后反变换回来。)

    进一步的,所述的步骤S2中,图像增强算法还包括:

    S2.3、对各种医疗图像采集设备增强后的输出图像RMi(x,y)分别进行图像灰度矫
    正,具体为:

    S2.3-1、计算输出图像RMi(x,y)的灰度均值avg和标准方差div;

    S2.3-2、分别计算出图像RMi(x,y)截断拉伸的最大值和最小值;


    α为比例系数,取值1.5~3;

    S2.3-3、计算出图像RMi(x,y)的平均强度做为偏移量offset,采用下述公式对图像
    RMi(x,y)的直方图进行拉伸;


    S2.3-4、采用步骤(b)的方法进行重心判定,得到拉伸后图像直方图的重心;

    用低于该重心的所有灰度即横坐标点数值乘以相应纵坐标值即点数后累 计求
    和,除以图像总点数,得到下限阈值;

    用高于该重心的所有灰度即横坐标点数值乘以相应纵坐标值即点数后累计求和,
    除以图像总点数,得到上限阈值;

    将前述上限阈值和下限阈值带入步骤S2.3-3中,作为截断拉伸的最大值和最小
    值,再次对图像直方图进行线性拉伸。

    所述的步骤S2.3-2和S2.3-3之间,还包括先用gamma拉伸对输出图像RMi(x,y)做处
    理,使得暗部的对比度得以增强,亮部的对比度受到抑制。

    进一步的,所述的步骤S2中,图像增强算法还包括:

    S2.4、对灰度矫正后的输出图像进行边缘增强,具体为:

    S2.4-1、采用5×5的高斯模板对输出图像以像素为单位进行滑动邻域操作,得到
    经过高斯模糊的图像矩阵;

    S2.4-2、然后用输出图像RMi(x,y)的图像矩阵减去经过高斯模糊后的图像矩阵,得
    到图像的边缘矩阵,给该边缘矩阵乘以调整参数,得到增强的边缘矩阵;

    S2.4-3、将前述增强的边缘矩阵与输出图像RMi(x,y)的矩阵相加,得到经过边缘增
    强的图像。

    滑动邻域操作具体为:利用滑动邻域对灰度图像做高斯模糊,邻域块空白的地方
    补0,对输入图形的每一个像素,指定的滑动邻域操作决定输出图像相应的像素值;即每当
    指定的操作从图像矩阵的一个位置转移到另一个位置时,滑动邻域也以相同的方向运动。

    普通图像是自然光反射图像,灰度变化范围从0-255,一般采用RGB三尺度处理。医
    疗图像主要是照射图像,工业上主要采用了dicom、HL7标准,多为12位图像,其灰度达到了
    0---4095,我们在多尺度选择上根据运算负荷,自适应的调整尺度因子和各尺度权重。

    我们采用不同于分段灰度拉伸的方法,取得了更好的对比度和细节。

    在灰度矫正之后,我们引入基于高斯模糊模板的边缘检测,并将边缘增 强效果叠
    加至原图,进一步优化人体解破学结构。

    本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

    关于本文
    本文标题:一种基于修正的多尺度RETINEX算法对医疗图像进行增强的方法.pdf
    链接地址://www.4mum.com.cn/p-6079462.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • pk10冠军4码3期计划 老时时2星怎么买 大乐透停止投注时间 太子心水三肖选一肖 北京pk10预测号码软件 无错36码特范围网站 安徽时时选号 北京pk10定位胆计划 前二组选包胆怎么玩 网赌3000赢100多万 买手机的网站有哪些 11选5六码组合一共多少组 pk10千里马全天计划 所谓棋牌龙虎大战技巧 pk10走势图分析 什么是飞艇计划