• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 15
    • 下载费用:30 金币  

    重庆时时彩后三定胆公式: 一种带约束配准的杆塔变形检测方法.pdf

    关 键 词:
    一种 约束 杆塔 变形 检测 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201611253900.2

    申请日:

    2016.12.30

    公开号:

    CN106683089A

    公开日:

    2017.05.17

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G06T 7/00申请日:20161230|||公开
    IPC分类号: G06T7/00(2017.01)I; G06T7/33(2017.01)I; G06T7/66(2017.01)I 主分类号: G06T7/00
    申请人: 南京南瑞信息通信科技有限公司
    发明人: 赵希超; 张子谦; 陈俣; 张艳燕; 林峰; 杨华飞; 李重阳; 杨卫东
    地址: 210003 江苏省南京市鼓楼区南瑞路8号
    优先权:
    专利代理机构: 南京纵横知识产权代理有限公司 32224 代理人: 朱妃;董建林
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611253900.2

    授权公告号:

    |||

    法律状态公告日:

    2017.06.09|||2017.05.17

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明公开了一种带约束配准的杆塔变形检测方法,包括步骤:获取原始杆塔的原始三维点云数据;获取待测阶段杆塔的状态三维点云数据;去噪处理和杆塔轴线提??;初始配准和精细配准;测量原始杆塔轴线和杆塔偏移状态轴线的夹角即为杆塔倾斜角;计算偏移杆塔上每一空间点到原始杆塔的欧氏距离,并计算经过精细配准的两片已去噪点云数据之间的Hausdorff距离,将欧氏距离与Hausdorff距离的比值作为杆塔偏移量;将杆塔偏移量转换为可视化的灰度值,得到杆塔形变偏差云图。实现对杆塔整体变形情况的有效分析,以直接得到杆塔在三维空间中的各处变形程度,不仅检测准确度高、效率高、成本低,而且不受外界环境的影响、便于操作。

    权利要求书

    1.一种带约束配准的杆塔变形检测方法,其特征在于,包括以下步骤:
    1)获取原始杆塔的原始三维点云数据;
    在杆塔竣工初期,在原始杆塔四周布置三个参照物,三个参照物的形变和偏移忽略不
    计;
    对原始杆塔及其四周参照物,利用三维激光扫描仪进行激光扫描,获取原始杆塔的原
    始三维点云数据并保存,该原始三维点云数据作为日后该杆塔变形检测的参照;
    2)获取待测阶段杆塔的状态三维点云数据;
    对需要检测的杆塔及其四周参照物,利用三维激光扫描仪进行激光扫描,获取待测阶
    段杆塔的状态三维点云数据并保存;
    3)去噪处理和杆塔轴线提??;
    根据三维激光扫描仪所获得的回波强度值,对原始三维点云数据和状态三维点云数据
    分别进行去噪处理;
    对经去噪处理后的原始三维点云数据和状态三维点云数据这两片已去噪点云数据,分
    别取杆塔每一层截面四边形的对角线交点获得对角线交点点集,并将对角线交点点集拟合
    为杆塔轴线,提取到原始杆塔轴线和杆塔状态轴线;
    4)初始配准;
    在两片已去噪点云数据中,通过寻找三个参照物上的特征点,按照两片已去噪点云数
    据重叠区域为上限值的初配原则进行配准;
    5)精细配准;
    对于两片已去噪点云数据中参照物的点云图像,采用ICP算法进行精细配准,使得经初
    始配准的两片已去噪点云数据统一到一个坐标系内;
    6)测量杆塔倾斜角;
    在经过精细配准的两片已去噪点云数据中,原始杆塔轴线保持不变,杆塔状态轴线配
    准后偏移为杆塔偏移状态轴线,将具有该杆塔偏移状态轴线的待测阶段杆塔记为偏移杆
    塔;
    测量原始杆塔轴线和杆塔偏移状态轴线的夹角即为杆塔倾斜角,该杆塔倾斜角作为杆
    塔形变的直观参数;
    7)计算杆塔形变;
    计算偏移杆塔上每一空间点到原始杆塔的欧氏距离,并计算经过精细配准的两片已去
    噪点云数据之间的Hausdorff距离,将欧氏距离与Hausdorff距离的比值作为杆塔偏移量;
    将杆塔偏移量转换为可视化的灰度值,得到杆塔形变偏差云图。
    2.根据权利要求1所述的一种带约束配准的杆塔变形检测方法,其特征在于:所述步骤
    1)中的三个参照物均为200×200×400的水泥立方体,三个参照物布置在原始杆塔四周10
    米半径范围内,并相邻隔60°、120°、180°,三个参照物所在三点构成直角三角形。
    3.根据权利要求1所述的一种带约束配准的杆塔变形检测方法,其特征在于:所述步骤
    2)和步骤3)中的三维激光扫描仪均采用ScanStation P20。
    4.根据权利要求1所述的一种带约束配准的杆塔变形检测方法,其特征在于:所述步骤
    3)中的去噪处理,具体为,选择回波强度值-1400~-1800区间范围作为杆塔结构点云筛选
    的阈值区间,将原始三维点云数据和状态三维点云数据的在阈值区间外的点云作为点云噪
    声去除。
    5.根据权利要求1所述的一种带约束配准的杆塔变形检测方法,其特征在于:所述步骤
    3)中的将对角线交点点集拟合为杆塔轴线,具体是采用最小二乘法进行拟合。
    6.根据权利要求1所述的一种带约束配准的杆塔变形检测方法,其特征在于:所述步骤
    5)中的采用ICP算法进行精细配准,具体为,
    利用四元数法,求的最小值,来求得最优的旋转矩
    阵;其中,F(q)为目标函数,R(qR)为旋转矩阵,qT为平移矩阵;
    5-1)将经去噪处理后的原始三维点云数据中的参照物的点云图像记为参照物点云P,
    将经去噪处理后的状态三维点云数据中的参照物的点云图像记为参照物点云Q;
    以参照物点云P为基准,以参照物点云Q为配准对象,分别计算参照物点云P和参照物点
    云Q的重心,
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>P</mi> </msub> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>Q</mi> </msub> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
    其中,为参照物点云P的重心,为参照物点云Q的重心,N为自然数,NP为参照物点云P
    中点的个数,pi为参照物点云P中的某一点坐标值,NQ为参照物点云Q中点的个数,qi为参照
    物点云Q中的某一点坐标值;
    5-2)根据参照物点云P和参照物点云Q构造协方差矩阵,
    <mrow> <msub> <mi>&Sigma;</mi> <mrow> <mi>P</mi> <mo>,</mo> <mi>Q</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>P</mi> </msub> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>P</mi> </msub> </munderover> <mo>&lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&rsqb;</mo> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>P</mi> </msub> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>P</mi> </msub> </munderover> <mo>&lsqb;</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <msup> <msub> <mi>q</mi> <mi>i</mi> </msub> <mi>T</mi> </msup> <mo>&rsqb;</mo> <mo>-</mo> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <msup> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mi>T</mi> </msup> </mrow>
    其中,T为矩阵转置算法;
    5-3)将协方差矩阵ΣP,Q写成对称矩阵形式,
    <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>&Sigma;</mi> <mrow> <mi>P</mi> <mo>,</mo> <mi>Q</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>&Sigma;</mi> <mrow> <mi>P</mi> <mo>,</mo> <mi>Q</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <msup> <mi>&Delta;</mi> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;</mi> </mtd> <mtd> <mrow> <msub> <mi>&Sigma;</mi> <mrow> <mi>P</mi> <mo>,</mo> <mi>Q</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>P</mi> <mo>,</mo> <mi>Q</mi> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>&Sigma;</mi> <mrow> <mi>P</mi> <mo>,</mo> <mi>Q</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
    其中,I3为三阶单位矩阵,tr(∑P,Q)是协方差矩阵∑P,Q的迹,Δ=[A23A31A12]T,

    5-4)求得Q(∑P,Q)的特征值以及特征向量,最大特征值的特征向量即为需要求得的旋
    转向量qR=[q0q1q2q3]T;
    5-5)根据所求得的旋转向量qR再求得旋转矩阵。
    7.根据权利要求1所述的一种带约束配准的杆塔变形检测方法,其特征在于:所述步骤
    7)计算杆塔形变,具体为,
    7-1)将经过精细配准的两片已去噪点云数据对应原始杆塔和偏移杆塔分别记为A和
    B',计算偏移杆塔上每一空间点到原始杆塔的欧氏距离DE(x,A)(x∈B')并存于动态数组E
    中;
    <mrow> <msub> <mi>D</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>A</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>&Element;</mo> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>min</mi> <mrow> <mi>a</mi> <mo>&Element;</mo> <mi>A</mi> </mrow> </munder> <mrow> <mo>(</mo> <mi>d</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>a</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
    其中,x为偏移杆塔上任意一空间点,a为原始杆塔上任意一空间点;
    7-2)将经过精细配准的两片已去噪点云数据之间的Hausdorff距离DH(B',A)记为L,赋
    于L的初值为0;
    在动态数组E中寻找最大值赋于L,即
    7-3)将欧氏距离DE(x,A)(x∈B')与L的比值作为杆塔偏移量;
    7-4)将杆塔偏移量转换为可视化的灰度值,灰度值表示的伪码程序为,
    ratio←DE(x,A)/L
    grey←255*ratio
    经过转换即可得到误差从小到大、所对应的颜色从黑到白的杆塔形变偏差云图。

    说明书

    一种带约束配准的杆塔变形检测方法

    技术领域

    本发明涉及一种变形检测方法,特别是涉及一种带约束配准的杆塔变形检测方
    法,属于变形检测技术领域。

    背景技术

    随着科技进步及社会的现代化发展,人民生活质量与需求不断的提高,用电量也
    随之大幅提升,这对于电网供电安全与可靠性能提出了越来越高的要求。电力的传输与分
    配离不开架空高压输电线路,高压架空杆塔、传输电缆广泛分布,其工作运行的好坏决定了
    电力系统的安全和效益。随着日渐长久,杆塔受到风霜雨雪等自然因素及近年来矿物开釆
    造成形态各异的地下釆空区等人为因素的影响,轻者可造成开裂、倾斜、杆塔变形,重者造
    成杆塔倾倒、坍塌,这将对输电网的安全运行造成极大威胁,对人民生命财产造成损失。

    在过去很长一段时间内,我国杆塔变形检测的主要方式为人工目测巡检,耗费大
    量的人力物力资源,并且人工巡查容易出现检测疏忽、缺陷忽略、偏差较大等问题。当前,也
    出现了一些利用电工装置或传感器的检测方法,虽然在检测准确度上有了较大提升,但对
    于多次大批量杆塔变形程度检测作业来说,仍旧存在着效率不高、装置安装维护成本高、存
    在安全隐患等问题。

    发明内容

    本发明的主要目的在于,克服现有技术中的不足,提供一种带约束配准的杆塔变
    形检测方法,不仅检测准确度高、效率高、成本低,而且不受外界环境的影响、便于操作。

    为了达到上述目的,本发明所采用的技术方案是:

    一种带约束配准的杆塔变形检测方法,包括以下步骤:

    1)获取原始杆塔的原始三维点云数据;

    在杆塔竣工初期,在原始杆塔四周布置三个参照物,三个参照物的形变和偏移忽
    略不计;

    对原始杆塔及其四周参照物,利用三维激光扫描仪进行激光扫描,获取原始杆塔
    的原始三维点云数据并保存,该原始三维点云数据作为日后该杆塔变形检测的参照;

    2)获取待测阶段杆塔的状态三维点云数据;

    对需要检测的杆塔及其四周参照物,利用三维激光扫描仪进行激光扫描,获取待
    测阶段杆塔的状态三维点云数据并保存;

    3)去噪处理和杆塔轴线提??;

    根据三维激光扫描仪所获得的回波强度值,对原始三维点云数据和状态三维点云
    数据分别进行去噪处理;

    对经去噪处理后的原始三维点云数据和状态三维点云数据这两片已去噪点云数
    据,分别取杆塔每一层截面四边形的对角线交点获得对角线交点点集,并将对角线交点点
    集拟合为杆塔轴线,提取到原始杆塔轴线和杆塔状态轴线;

    4)初始配准;

    在两片已去噪点云数据中,通过寻找三个参照物上的特征点,按照两片已去噪点
    云数据重叠区域为上限值的初配原则进行配准;

    5)精细配准;

    对于两片已去噪点云数据中参照物的点云图像,采用ICP算法进行精细配准,使得
    经初始配准的两片已去噪点云数据统一到一个坐标系内;

    6)测量杆塔倾斜角;

    在经过精细配准的两片已去噪点云数据中,原始杆塔轴线保持不变,杆塔状态轴
    线配准后偏移为杆塔偏移状态轴线,将具有该杆塔偏移状态轴线的待测阶段杆塔记为偏移
    杆塔;

    测量原始杆塔轴线和杆塔偏移状态轴线的夹角即为杆塔倾斜角,该杆塔倾斜角作
    为杆塔形变的直观参数;

    7)计算杆塔形变;

    计算偏移杆塔上每一空间点到原始杆塔的欧氏距离,并计算经过精细配准的两片
    已去噪点云数据之间的Hausdorff距离,将欧氏距离与Hausdorff距离的比值作为杆塔偏移
    量;

    将杆塔偏移量转换为可视化的灰度值,得到杆塔形变偏差云图。

    本发明进一步设置为:所述步骤1)中的三个参照物均为200×200×400的水泥立
    方体,三个参照物布置在原始杆塔四周10米半径范围内,并相邻隔60°、120°、180°,三个参
    照物所在三点构成直角三角形。

    本发明进一步设置为:所述步骤2)和步骤3)中的三维激光扫描仪均采用
    ScanStation P20。

    本发明进一步设置为:所述步骤3)中的去噪处理,具体为,选择回波强度值-1400
    ~-1800区间范围作为杆塔结构点云筛选的阈值区间,将原始三维点云数据和状态三维点
    云数据的在阈值区间外的点云作为点云噪声去除。

    本发明进一步设置为:所述步骤3)中的将对角线交点点集拟合为杆塔轴线,具体
    是采用最小二乘法进行拟合。

    本发明进一步设置为:所述步骤5)中的采用ICP算法进行精细配准,具体为,

    利用四元数法,求的最小值,来求得最优的旋转
    矩阵;其中,F(q)为目标函数,R(qR)为旋转矩阵,qT为平移矩阵;

    5-1)将经去噪处理后的原始三维点云数据中的参照物的点云图像记为参照物点
    云P,将经去噪处理后的状态三维点云数据中的参照物的点云图像记为参照物点云Q;

    以参照物点云P为基准,以参照物点云Q为配准对象,分别计算参照物点云P和参照
    物点云Q的重心,


    其中,为参照物点云P的重心,为参照物点云Q的重心,N为自然数,NP为参照物
    点云P中点的个数,pi为参照物点云P中的某一点坐标值,NQ为参照物点云Q中点的个数,qi为
    参照物点云Q中的某一点坐标值;

    5-2)根据参照物点云P和参照物点云Q构造协方差矩阵,


    其中,T为矩阵转置算法;

    5-3)将协方差矩阵ΣP,Q写成对称矩阵形式,


    其中,I3为三阶单位矩阵,tr(ΣP,Q)是协方差矩阵ΣP,Q的迹,Δ=[A23A31A12]T,

    5-4)求得Q(∑P,Q)的特征值以及特征向量,最大特征值的特征向量即为需要求得
    的旋转向量qR=[q0q1q2q3]T;

    5-5)根据所求得的旋转向量qR再求得旋转矩阵。

    本发明进一步设置为:所述步骤7)计算杆塔形变,具体为,

    7-1)将经过精细配准的两片已去噪点云数据对应原始杆塔和偏移杆塔分别记为A
    和B',计算偏移杆塔上每一空间点到原始杆塔的欧氏距离DE(x,A)(x∈B')并存于动态数组
    E中;


    其中,x为偏移杆塔上任意一空间点,a为原始杆塔上任意一空间点;

    7-2)将经过精细配准的两片已去噪点云数据之间的Hausdorff距离DH(B',A)记为
    L,赋于L的初值为0;

    在动态数组E中寻找最大值赋于L,即

    7-3)将欧氏距离DE(x,A)(x∈B')与L的比值作为杆塔偏移量;

    7-4)将杆塔偏移量转换为可视化的灰度值,灰度值表示的伪码程序为,

    ratio←DE(x,A)/L

    grey←255*ratio

    经过转换即可得到误差从小到大、所对应的颜色从黑到白的杆塔形变偏差云图。

    与现有技术相比,本发明具有的有益效果是:

    通过原始数据和检测数据的获取,经过去噪处理后,再利用参照物的点云图像进
    行配准,从而计算得到杆塔倾斜角和杆塔形变,实现对杆塔整体变形情况的有效分析,以直
    接得到杆塔在三维空间中的各处变形程度;并且以可视化的杆塔形变偏差云图作为显示,
    避免了传统的只能得到单一投影方向或者单一变形参数的缺点,能更好的为杆塔维护提供
    准确的基础数据;同时,该检测方法的操作不受外界环境的影响,既不需要工作人员到达被
    测杆塔处,也不需要在杆塔上安装反射元件,可有效地解决现有测量效率不高、作业存在安
    全隐患的问题,检测精度得以大幅提高,经济而实用。

    上述内容仅是本发明技术方案的概述,为了更清楚的了解本发明的技术手段,下
    面结合附图对本发明作进一步的描述。

    附图说明

    图1为本发明一种带约束配准的杆塔变形检测方法的流程图;

    图2是本发明检测方法中原始杆塔及其四周参照物的三维示意图;

    图3是本发明检测方法中原始杆塔及其四周参照物的俯视示意图;

    图4为本发明检测方法中激光扫描获得的原始杆塔的原始三维点云数据图;

    图5是本发明检测方法中杆塔轴线的拟合示意图;

    图6是本发明检测方法得到的杆塔形变偏差云图(单位:米)。

    具体实施方式

    下面结合说明书附图,对本发明作进一步的说明。

    本发明提供一种带约束配准的杆塔变形检测方法,如图1所示,包括以下步骤:

    1)获取原始杆塔的原始三维点云数据;

    在杆塔竣工初期,在原始杆塔四周布置三个参照物,三个参照物的形变和偏移忽
    略不计,而且竣工初期的杆塔是经过检测合格的竖直杆塔;如图2和图3所示,三个参照物均
    为200×200×400的水泥立方体,分别为参照物A、参照物B和参照物C;三个参照物布置在原
    始杆塔四周10米半径范围内,并相邻隔60°、120°、180°,三个参照物所在三点构成直角三角
    形。

    对原始杆塔及其四周参照物,利用型号为ScanStation P20的三维激光扫描仪进
    行激光扫描,获取原始杆塔的原始三维点云数据并保存,如图4所示,该原始三维点云数据
    作为日后该杆塔变形检测的参照。

    2)获取待测阶段杆塔的状态三维点云数据;

    对需要检测的同一杆塔及其四周参照物,也利用型号为ScanStation P20的三维
    激光扫描仪进行激光扫描,获取待测阶段杆塔的状态三维点云数据并保存。

    其中,为便于所测数据的质量,需保证三维激光扫描仪的水平,通过调节三维激光
    扫描仪上的调平装置,使气泡位于水平仪正中心。

    3)去噪处理和杆塔轴线提??;

    将原始三维点云数据和状态三维点云数据输入数据处理计算机,由于杆塔是桁架
    结构对象,所以受其自身结构和周边环境的原因,在激光扫描时难免会将周围环境的点云
    数据一并扫描录入;因此可以根据三维激光扫描仪所获得的回波强度值,对原始三维点云
    数据和状态三维点云数据分别进行去噪处理,以免噪声数据影响检测准确性。

    其中去噪处理具体为,选择回波强度值-1400~-1800区间范围作为杆塔结构点云
    筛选的阈值区间,将原始三维点云数据和状态三维点云数据的在阈值区间外的点云作为点
    云噪声去除。

    对经去噪处理后的原始三维点云数据和状态三维点云数据这两片已去噪点云数
    据,分别取杆塔每一层截面四边形的对角线交点获得对角线交点点集,并采用最小二乘法
    将对角线交点点集拟合为杆塔轴线,如图5所示,提取到原始杆塔轴线和杆塔状态轴线。

    4)初始配准;

    在两片已去噪点云数据中,通过寻找三个参照物上的特征点,按照两片已去噪点
    云数据重叠区域为上限值的初配原则进行配准。

    5)精细配准;

    对于两片已去噪点云数据中参照物的点云图像,采用ICP算法进行精细配准,使得
    经初始配准的两片已去噪点云数据统一到一个坐标系内。

    其中采用ICP算法进行精细配准,具体为,

    利用四元数法,求的最小值,来求得最优的旋转
    矩阵;其中,F(q)为目标函数,R(qR)为旋转矩阵,qT为平移矩阵;

    5-1)将经去噪处理后的原始三维点云数据中的参照物的点云图像记为参照物点
    云P,将经去噪处理后的状态三维点云数据中的参照物的点云图像记为参照物点云Q;

    以参照物点云P为基准,以参照物点云Q为配准对象,分别计算参照物点云P和参照
    物点云Q的重心,


    其中,为参照物点云P的重心,为参照物点云Q的重心,N为自然数,NP为参照物
    点云P中点的个数,pi为参照物点云P中的某一点坐标值,NQ为参照物点云Q中点的个数,qi为
    参照物点云Q中的某一点坐标值;

    5-2)根据参照物点云P和参照物点云Q构造协方差矩阵,


    其中,T为矩阵转置算法;

    5-3)根据上述协方差矩阵,将协方差矩阵写成对称矩阵形式:


    其中,I3为三阶单位矩阵,tr(∑P,Q)是协方差矩阵∑P,Q的迹,Δ=[A23A31A12]T,

    5-4)求得Q(∑P,Q)的特征值以及特征向量,最大特征值的特征向量即为需要求得
    的旋转向量qR=[q0q1q2q3]T;

    5-5)根据所求得的旋转向量qR再求得旋转矩阵。

    6)测量杆塔倾斜角;

    在经过精细配准的两片已去噪点云数据中,原始杆塔轴线保持不变,杆塔状态轴
    线配准后偏移为杆塔偏移状态轴线,将具有该杆塔偏移状态轴线的待测阶段杆塔记为偏移
    杆塔。

    测量原始杆塔轴线和杆塔偏移状态轴线的夹角即为杆塔倾斜角,该杆塔倾斜角作
    为杆塔形变的直观参数。

    7)计算杆塔形变;

    计算偏移杆塔上每一空间点到原始杆塔的欧氏距离,并计算经过精细配准的两片
    已去噪点云数据之间的Hausdorff距离,将欧氏距离与Hausdorff距离的比值作为杆塔偏移
    量;

    将杆塔偏移量转换为可视化的灰度值,得到杆塔形变偏差云图。

    为方便描述算法,先引入两个基本概念:

    空间中一点x到点云R的距离定义为:


    其中,d(x,r)为点x到点云R中任一点r的欧氏距离,DE(x,R)为点云R上离点云X最
    近的点到点x的距离;

    空间中的点云Q到点云R的单向Hausdorff距离定义为:


    DH(Q,R)为点云Q中离点云R最近点的所有距离的最大值。

    7-1)将经过精细配准的两片已去噪点云数据对应原始杆塔和偏移杆塔分别记为A
    和B',计算偏移杆塔上每一空间点到原始杆塔的欧氏距离DE(x,A)(x∈B')并存于动态数组
    E中;


    其中,x为偏移杆塔上任意一空间点,a为原始杆塔上任意一空间点;

    7-2)将经过精细配准的两片已去噪点云数据之间的Hausdorff距离DH(B',A)记为
    L,赋于L的初值为0;

    在动态数组E中寻找最大值赋于L,即

    7-3)将欧氏距离DE(x,A)(x∈B')与L的比值作为杆塔偏移量;

    7-4)将杆塔偏移量转换为可视化的灰度值,灰度值表示的伪码程序为,

    ratio←DE(x,A)/L

    grey←255*ratio

    经过转换即可得到误差从小到大、所对应的颜色从黑到白的杆塔形变偏差云图。

    以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该
    了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原
    理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进
    都落入要求?;さ谋痉⒚鞣段?。本发明要求?;し段в伤降娜ɡ笫榧捌涞刃锝?br />定。

    关于本文
    本文标题:一种带约束配准的杆塔变形检测方法.pdf
    链接地址://www.4mum.com.cn/p-6079436.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 任二直选单式 双色球计算公式99% pk10免费计划软件安卓 单双十期倍投稳赚方案 pk10app计划软 北京pk10现场视频直播 福建11选五技巧稳赚 pk10最牛稳赚5码机 分分彩一买就输 七星彩开奖号码结果 多赢山东11选5全能版APP 青海快三计划软件 北京时时在线开奖 怎么研究幸运飞艇 时时彩定位胆稳赚技巧 分分彩计划软件安卓版