• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 10
    • 下载费用:30 金币  

    重庆时时彩对码是什么: 一种基于排放源强相似性的机动车尾气遥测设备布点方法.pdf

    关 键 词:
    一种 基于 排放 相似性 机动车 尾气 遥测 设备 布点 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201611267870.0

    申请日:

    2016.12.31

    公开号:

    CN106683024A

    公开日:

    2017.05.17

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G06Q 50/26申请日:20161231|||公开
    IPC分类号: G06Q50/26(2012.01)I; G06K9/62; G08G1/01; G01N33/00 主分类号: G06Q50/26
    申请人: 中国科学技术大学
    发明人: 康宇; 李泽瑞; 吕文君; 许镇义; 王雪峰
    地址: 230026 安徽省合肥市包河区金寨路96号
    优先权:
    专利代理机构: 北京科迪生专利代理有限责任公司 11251 代理人: 杨学明;顾炜
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611267870.0

    授权公告号:

    |||

    法律状态公告日:

    2017.06.09|||2017.05.17

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明公开了一种基于排放源强相似性的机动车尾气遥测设备布点方法,步骤为:计算交通路网中每两条道路的排放源强相似度;根据排放源强相似度确定每条道路的k近邻;根据每条道路的k近邻寻找互为k近邻的道路;互为k近邻的道路之间聚成一簇,应用广度优先搜索法确定聚类结果;从每簇中选择一条符合布设遥测设备条件的道路作为布点道路,所得的布点道路集合即为最终的布点方案。而未布设设备道路的排放源强可根据他们与同一簇中已布设设备道路之间的一元线性关系来推算。本发明可有效优化机动车尾气遥测系统中设备的点位设置,从而在保证全路网所有道路排放源强可获得的情况下,最小化遥测设备的数量。

    权利要求书

    1.一种基于排放源强相似性的机动车尾气遥测设备布点方法,其特征在于步骤如下:
    步骤1:计算交通路网中每两条道路的排放源强相似度;
    步骤2:根据步骤1的计算结果,对道路vi,其中i=1,2,…,m,m是交通路网中道路的总数
    量,将路网中所有其他道路vj按照与vi的排放源强相似度从大到小排列,前k条道路即作为
    道路vi的k近邻,其中k,j为正整数,1≤j≤m,且j≠i;
    步骤3:根据步骤2得到的道路vi的k近邻,寻找互为k近邻的道路,使用一个无向图G=
    (V,E)来描述道路之间的互为k近邻关系,其中V={v1,v2,…,vm}是无向图G的顶点集合,vi
    表示交通路网中的道路,i=1,2,…,m;当且仅当vp和vq互为k近邻时,vp和vq之间存在无向
    边,其中p,q=1,2,…,m,且p≠q;
    步骤4:将步骤3中互为k近邻的道路聚成一簇,应用广度优先搜索法确定所有道路v1,
    v2,…,vm中某些道路能够聚成簇,从而得到所有簇即为聚类结果;
    步骤5:对于步骤4所得的聚类结果,从每簇选择一条符合布设遥测设备条件的道路作
    为布点道路,所得的布点道路集合即为最终的布点方案。
    2.根据权利要求1所述的基于排放源强相似性的机动车尾气遥测设备布点方法,其特
    征在于:所述步骤1中,计算交通路网中每两条道路的排放源强相似度的方法是通过相关系
    数的计算确定,两条道路排放源强的相似程度如下:
    <mrow> <msub> <mi>&rho;</mi> <mrow> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>cov</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>&theta;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>&theta;</mi> </msub> <mo>-</mo> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>&theta;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>&theta;</mi> </msub> <mo>-</mo> <mover> <mi>Y</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow>
    其中,ρx,Y代表道路X,Y排放源强之间的相关系数,cov(X,Y)表示X,Y的协方差,X代表道
    路X的排放源强数组,Y代表道路Y的排放源强数组,和分别表示道路X和道路Y排放源强
    数组的平均值,θ表示从1到n的正整数,n为样本数量。
    3.根据权利要求1所述的基于排放源强相似性的机动车尾气遥测设备布点方法,其特
    征在于:所述步骤4中,确定聚类结果的方法如下:
    从无向图G的顶点的道路v1出发,依次访问道路v1的所有未访问过的邻接顶点,即与道
    路v1互为k近邻的顶点,然后再依次访问这些顶点的未访问过的邻接顶点,重复这一过程,
    直到不存在另外的邻接顶点,那么所有被访问过的顶点即是一簇;然后从另一未被访问过
    的顶点出发,重复上述过程,直到所有顶点都被访问完,得到所有簇,即遍历结束之后即得
    到聚类结果。

    说明书

    一种基于排放源强相似性的机动车尾气遥测设备布点方法

    技术领域

    本发明涉及一种城市路网机动车尾气遥测设备布点方法,属于公共设施选址技术
    领域。

    背景技术

    随着我国城镇化进程的发展,人民生活水平逐步提升,居民出行需求大量增多,造
    成我国机动车保有量的大幅度增加。在满足人们出行需求的同时,机动车造成的空气污染
    亦日趋严重。统计表明,机动车尾气排放占据城市总空气污染的50-80%,已经成为城市主
    要空气污染源之一。因此对于机动车尾气排放的控制与治理,已成为改善我国城市空气质
    量的重要环节。为治理机动车尾气污染,环保部门亟需掌握城市路网各道路上的尾气排放
    状况,从而采取有针对性的措施减少尾气排放。遥测检测技术是一种有效的机动车尾气检
    测手段,可在短时间内完成对大量在路机动车的尾气排放水平进行普查,通过在路网上广
    泛布设机动车尾气遥测设备可实现全路网各道路的尾气排放状况估计。但是由于城市规模
    的不断扩大,城市交通路网发展迅速,覆盖范围越来越广,路网密度越来越大,道路数量及
    其庞大,如果要在每条道路上都布设遥测设备,所需成本将过高。所以,如何在交通网络中
    选取合适的道路进行遥测设备布设,从而可估计全网络的机动车尾气排放状况成为一个关
    键技术。

    排放源源强指单位时间内道路上在路机动车尾气排放污染物的排放量,采用源强
    评价道路污染程度有重要价值,不仅可以分析单条道路的污染情况,也可由此分析机动车
    尾气对城市各区域的污染贡献。由于城市路网是一个有机整体,道路在交叉口处相连接,而
    路网交叉口的流入车辆数目等于流出车辆数目,因此道路机动车流量之间存在关联,而道
    路排放源强与车流量又有密切关系,可以确定的是,在城市路网中存在一些道路的排放源
    强之间有相关性。另一方面,由于居民出行的周期性和相似性,道路上的机动车尾气排放量
    在时间及空间上都存在一些相似性。

    在本发明之前,申请号201510214145.6公开了一种城市路网机动车尾气实时遥感
    监测基址选取方法,该方法是通过尾气遥测设备的点位优化从而使得城市路网上的遥测设
    备可检测到尽量多的车辆,该方法侧重于个体车辆排放水平的普查,而对于交通网络中道
    路总体排放源强的估计却效果欠佳。

    发明内容

    本发明技术解决问题:克服现有技术的不足,提供一种基于排放源强相似性的机
    动车尾气遥测设备布点方法,可有效优化机动车尾气遥测系统中设备的点位设置,从而在
    保证全路网所有道路排放源强可获得的情况下,最小化遥测设备的数量。

    本发明技术解决方案:一种基于排放源强相似性的机动车尾气遥测设备布点方
    法,通过对城市路网中各道路的排放源强的历史信息进行相似性分析,确定每两条道路的
    排放源强相似度,然后采用聚类方法将相似的道路进行聚类,在每一簇中选取一条道路进
    行遥测设备的布设,那么其他道路的排放源强就可根据其与已布设道路之间的相关关系进
    行推算。

    具体包括以下步骤:

    1)计算交通路网中每两条道路的排放源强相似度;

    由于道路排放源强与车流量有密切关系,而交通路网中的道路机动车流量之间存
    在关联,因此可以确定的是,在城市路网中存在一些道路的排放源强之间有相似性。下一步
    需要确定的是路网上哪些道路的排放源强有相似性,相似的程度有多大。这种相似的程度
    采用相关系数来表示:


    其中,ρX,Y代表道路X,Y排放源强之间的相关系数,cov(X,Y)表示X,Y的协方差,X代
    表道路X的排放源强数组,Y代表道路Y的排放源强数组,和分别表示道路X和道路Y排放
    源强数组的平均值,θ表示从1到n的正整数,n为样本数量。

    为使得所计算的相关系数具有代表性,必须有大量样本数据支持,即n的值应选取
    的稍大一些,例如选择3天的每小时排放源强历史数据。需要注意的是,道路之间的相似度
    无法由一组历史数据的相关系数完全表示,应尽可能选择多组同时间段的历史数据进行计
    算,以保证相关系数的稳定性。

    2)根据步骤1)的计算结果,对道路vi,其中i=1,2,…,m,m是交通路网中道路的总
    数量,将路网中所有其他道路vj(1≤j≤m,且j≠i)按照与vi的排放源强相似度从大到小排
    列,前k条道路即作为道路vi的k近邻,其中k为正整数;

    根据计算出的排放源强相似度,对道路vi,其中i=1,2,…,m,m是交通路网中道路
    的总数量,将路网中所有其他道路vj(1≤j≤m,且j≠i)按照与vi的排放源强相似度从大到
    小排列,前k条道路即作为道路vi的k近邻。k值可选择从0到m-1,其中m是交通路网中道路的
    总数量,随着k的值增大,聚类数越来越小,需布设遥测设备的道路也越来越少??梢允筴从0
    开始逐步增大,并比较k取每个值时的聚类数,直到得到理想的结果时所对应的k值即为最
    终取值。k的选取也可根据欲布设的遥测设备数量来决定,随着k值的增大,当得到的聚类数
    等于欲布设的遥测设备数量时,此时的聚类结果即为最终的聚类结果;

    3)根据步骤2得到的道路vi的k近邻,其中i=1,2,…,m,m是交通路网中道路的总
    数量,寻找互为k近邻的道路,使用一个无向图G=(V,E)来描述道路之间的互为k近邻关系,
    其中V={v1,v2,…,vm}是无向图G的顶点集合,vi表示交通路网中的道路,i=1,2,…,m,m是
    交通路网中道路的总数量;当且仅当vp和vq互为k近邻时(p,q=1,2,…,m,且p≠q),vp和vq
    之间存在无向边;

    步骤2中得到交通路网每条道路的k近邻,如果道路vp为道路vq的k近邻,同时道路
    vq为道路vp的k近邻,则称vp和vq互为k近邻(p,q=1,2,…,m,且p≠q)??梢允褂靡桓鑫尴蛲?br />G=(V,E)来描述道路之间的互为k近邻关系,其中V={v1,v2,…,vm}是无向图G的顶点集合,
    vi(i=1,2,…,m)表示交通路网中的道路,m是交通路网中道路的总数量;当且仅当vp和vq互
    为k近邻时,vp和vq之间存在无向边。

    4)步骤3)中互为k近邻的道路聚成一簇,应用广度优先搜索法确定所有道路v1,
    v2,…,vp中哪些道路可以聚成一簇,从而得到所有簇即为聚类结果;

    在步骤3)中互为k近邻的道路聚成一簇,即无向图G的每个连通子图中包含的顶点
    所对应的道路聚集成一簇,G中包含的连通子图数量即为聚类数。下面采用广度优先搜索法
    来遍历该无向图,得到最终的聚类结果。广度优先搜索法的过程如下:从图G中的某一起始
    点出发,例如v1,依次访问v1的所有未访问过的邻接顶点,即与v1互为k近邻的顶点,然后再
    依次访问这些顶点的未访问过的邻接顶点,重复这一过程,直到不存在另外的邻接顶点,那
    么所有被访问过的顶点即是一簇;然后从另一未被访问过的顶点出发,重复上述过程,直到
    所有顶点都被访问完,即遍历结束之后就可得到最终的聚类结果。

    在实际交通路网中,有一些道路比较符合布设遥测设备的条件,例如,建有高架桥
    或人行天桥的道路。由于遥测设备中的摄像机需要安装在道路上方,高架桥或人行天桥可
    直接用来安装摄像机,从而缩短安装周期,减少安装过程对正常交通的影响,并一定程度上
    降低安装成本。然而还有一些道路是不适合布设遥测设备的,例如,位于工厂等污染区域的
    道路和交通量巨大的道路。如果将遥测设备布设在污染区域,设备的检测数据会受到周围
    环境中污染物的影响,因此会产生偏差。交通量巨大的道路在城市交通路网中极为重要,而
    遥测设备的安装会阻断交通,对居民出行产生严重影响,因此尽量不进行遥测设备的布设。
    在每簇中选择布点道路时应充分考虑道路环境是否符合遥测设备的布设条件。

    对于未布设设备的道路,其排放源强可根据布点道路上遥测设备所测得的排放源
    强数据进行推算。本发明使用一元线性关系来描述同一簇中布点道路和未布设设备道路的
    排放源强之间的关系,即Y=aX+b的形式,通过两条道路X和Y的历史排放源强数据回归出两
    个参数a和b,根据这种关系就可得到未布设设备道路的排放源强。

    本发明与现有技术相比的优点在于:

    (1)在本发明之前,申请号201510214145.6公开了一种城市路网机动车尾气实时
    遥感监测基址选取方法,该方法是通过尾气遥测设备的点位优化从而使得城市路网上的遥
    测设备可检测到尽量多的车辆,该方法侧重于个体车辆排放水平的普查,而对于交通网络
    中道路总体排放源强的估计却效果欠佳。本发明通过对城市路网中各道路的排放源强的历
    史信息进行相似性分析,确定每两条道路的排放源强相似度,然后采用聚类方法将相似的
    道路进行聚类,在每一簇中选取一条道路进行遥测设备的布设,而其他道路的排放源强就
    可根据其与布点道路之间的相关关系进行推算,从而实现全路网道路排放源强的估计。

    (2)本发明中所采用的聚类算法原理简单且易于实现,通过k值的选取可得到多种
    布点方案,从而决策者可根据本地区路网的实际情况以及布设遥测设备的预算从中选择真
    正适应本地区的最终方案。

    (3)本发明在需布设遥测设备的数量确定之后,在最终决定布设设备的道路的过
    程中,给予决策者充分的选择空间,决策者可根据专家的经验以及对本地区路网的了解选
    取合适道路进行布设。

    (4)由于遥测设备可进行对道路机动车尾气排放源强的实时检测,因此采用本发
    明提出的遥测设备布点方法可对全路网各道路的排放源强进行实时估计,为环保部门的政
    策制定提供数据支持。

    附图说明

    图1为布点方法流程图;

    图2为交通网络示意图;

    图3为6条道路互为k近邻关系的无向图。

    具体实施方式

    为了使本发明的目的、技术方案及优点更加清楚明白,以下对本发明进行进一步
    详细说明。

    如图1所示,本发明具体实施如下:

    由于路网中道路上的排放源强存在相似性,需确定的是路网上哪些道路的排放源
    强有相似性,相似的程度有多大。这种相似的程度采用相关系数来表示:


    其中,ρX,Y代表道路X,Y排放源强之间的相关系数,cov(X,Y)表示X,Y的协方差,X代
    表道路X的排放源强数组,Y代表道路Y的排放源强数组,和分别表示道路X和道路Y排放
    源强数组的平均值,θ表示从1到n的正整数,n为样本数量。

    为使得所计算的相关系数具有代表性,必须有大量样本数据支持,即n的值应选取
    的稍大一些,例如可以选择3天的每小时排放源强历史数据。需要注意的是,道路之间的相
    似度无法由一组历史数据的相关系数完全表示,应尽可能选择多组同时间段的历史数据进
    行计算,以保证相关系数的稳定性。

    根据计算出的道路排放源强相似度,对道路vi,其中i=1,2,…,m,m是交通路网中
    道路的总数量,将路网中所有其他道路vj(1≤j≤m,且j≠i)按照与vi的排放源强相似度从
    大到小排列,前k条道路即作为道路vi的k近邻,其中k为正整数。k值可选择从0到m-1,其中m
    是交通路网中道路的总数量,随着k的值增大,聚类数越来越小,需布设遥测设备的道路也
    越来越少??梢允筴从0开始逐步增大,并比较k取每个值时的聚类数,直到得到理想的结果
    时所对应的k值即为最终取值。k的选取也可根据欲布设的遥测设备数量来决定,随着k值的
    增大,当得到的聚类数等于欲布设的遥测设备数量时,此时的聚类结果即为最终的聚类结
    果。

    得到交通路网道路vi的k近邻之后,其中i=1,2,…,m,m是交通路网中道路的总数
    量,如果道路vp为道路vq的k近邻,同时道路vq为道路vp的k近邻,则称vp和vq互为k近邻(p,q
    =1,2,…,m,且p≠q)??梢允褂靡桓鑫尴蛲糋=(V,E)来描述道路之间的互为k近邻关系,其
    中V={v1,v2,…,vm}是无向图G的顶点集合,vi(i=1,2,…,m)表示交通路网中的道路,m是
    交通路网中道路的总数量;当且仅当vp和vq互为k近邻时,vp和vq之间存在无向边。在无向图
    G中,每个连通子图中包含的顶点所对应的道路聚集成一簇,则无向图G中包含的连通子图
    数量即为聚类数。

    下面采用广度优先搜索法来遍历该无向图,得到最终的聚类结果。广度优先搜索
    法的过程如下:从图G中的某一起始点出发,例如v1,依次访问v1的所有未访问过的邻接顶
    点,即与v1互为k近邻的顶点,然后再依次访问这些顶点的未访问过的邻接顶点,重复这一
    过程,直到不存在另外的邻接顶点,那么所有被访问过的顶点即是一簇;然后从另一未被访
    问过的顶点出发,重复上述过程,直到所有顶点都被访问完,即遍历结束之后就可得到最终
    的聚类结果,从每一簇中选择一条符合布设遥测设备条件的道路作为布点道路,所得的布
    点道路集合即为最终的布点方案。

    由于在实际交通路网中,有一些道路比较符合布设遥测设备的条件,例如,建有高
    架桥或人行天桥的道路。由于遥测设备中的摄像机需要安装在道路上方,高架桥或人行天
    桥可直接用来安装摄像机,从而缩短安装周期,减少安装过程对正常交通的影响,并一定程
    度上降低安装成本。然而还有一些道路是不适合布设遥测设备的,例如,位于工厂等污染区
    域的道路和交通量巨大的道路。如果将遥测设备布设在污染区域,设备的检测数据会受到
    周围环境中污染物的影响,因此会产生偏差。交通量巨大的道路在城市交通路网中极为重
    要,而遥测设备的安装会阻断交通,对居民出行产生严重影响,因此尽量不进行遥测设备的
    布设。在得到聚类结果之后,从每簇选择布点道路时应充分考虑路网实际情况,从而确定最
    终的布点方案。

    根据已布设遥测设备的道路所测得的排放源强可以根据相似性推算出其他未布
    设设备道路的排放源强。这里本发明使用一元线性关系来描述同一簇中已布设设备道路和
    未布设设备道路的排放源强之间的关系,即Y=aX+b的形式,通过两条道路X和Y的历史排放
    源强数据回归出两个参数a和b,根据这种关系就可得到未布设设备道路的排放源强。

    下面使用一个实例来说明本发明提出的布点方法的具体流程:如图2所示的一个
    简单的交通路网,包含6条道路。通过对这6条道路排放源强历史数据的分析计算,得到下表
    每两条道路之间的相关系数:

    ρ
    v1
    v2
    v3
    v4
    v5
    v6
    v1
    1
    0.95
    0.92
    0.76
    0.63
    0.47
    v2
    0.95
    1
    0.86
    0.79
    0.84
    0.56
    v3
    0.92
    0.86
    1
    0.85
    0.81
    0.69
    v4
    0.76
    0.79
    0.85
    1
    0.83
    0.87
    v5
    0.63
    0.84
    0.81
    0.83
    1
    0.79
    v6
    0.47
    0.56
    0.69
    0.87
    0.79
    1

    选择k=2,则这6条道路的k近邻关系如下:v1的k近邻为v2和v3;v2的k近邻为v1和
    v3;v3的k近邻为v1和v2;v4的k近邻为v3和v6;v5的k近邻为v3和v4;v6的k近邻为v4和v5。

    根据以上的k近邻关系得到互为k近邻的道路有:v1、v2和v3;v4和v6;v5不存在与其
    互为k近邻的道路,用无向图来描述这种关系即如图3所示。在这个简单的实例中,易得聚类
    结果为:6条道路分为3簇,分别是:v1、v2和v3;v4和v6;v5。该路网需要布设遥测设备的数量为
    3,考虑到第一簇中v1道路上建有人行天桥,因此在该道路上进行遥测设备布设可减少成
    本;第二簇中v6处于工厂区域,因此尽量不在该道路布设遥测设备,选择v4作为布点道路;而
    v5单独成一簇,须在此道路布设遥测设备。

    布设遥测设备的道路排放源强可根据遥测设备的检测数据进行计算得出,而未布
    设道路可通过建立其与布设道路排放源强之间的一元线性关系进行推算。例如在本实例
    中,v4和v6聚为一簇,v6的排放源强可根据实时测得的v4的排放源强推出。下表为一天24小
    时v4和v6的排放源强数据,以CO(kg·h-1)排放源强为例:

    0:00-1:00
    8.4
    24.2
    8:00-9:00
    28.6
    79.8
    16:00-17:00
    15.3
    47.8
    1:00-2:00
    4.7
    10.6
    9:00-10:00
    27.4
    68.4
    17:00-18:00
    21.6
    76.3
    2:00-3:00
    2.2
    9.4
    10:00-11:00
    24.8
    64.4
    18:00-19:00
    22.4
    55.2
    3:00-4:00
    0.8
    4.8
    11:00-12:00
    26.5
    88.1
    19:00-20:00
    25.7
    58.7
    4:00-5:00
    1.3
    16.1
    12:00-13:00
    20.8
    60.7
    20:00-21:00
    24.3
    64.9
    5:00-6:00
    3.0
    31.8
    13:00-14:00
    23.9
    84.9
    21:00-22:00
    18.9
    70.4
    6:00-7:00
    6.5
    49.3
    14:00-15:00
    19.7
    85.7
    22:00-23:00
    15.3
    89.2
    7:00-8:00
    20.7
    86.4
    15:00-16:00
    14.4
    63.6
    23:00-24:00
    11.4
    36.7

    通过回归分析建立两者之间的一元线性关系,即y=2.47x+15.3。其中,x代表道路
    v4的排放源强,y代表道路v6的排放源强。根据这一关系可实时推测道路v6的排放源强。

    综上,本发明可有效优化机动车尾气遥测监测系统中设备的点位设置,从而在保
    证全路网所有道路排放源强可获得的情况下,最小化遥测设备的数量。

    提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本
    发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修
    改,均应涵盖在本发明的范围之内。

    关于本文
    本文标题:一种基于排放源强相似性的机动车尾气遥测设备布点方法.pdf
    链接地址://www.4mum.com.cn/p-6079422.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 双色球重复中奖号码 掘金北京pk拾计划软件免费 福彩3d单选投注技巧 中国体育彩票机选 彩票有哪些好的计划软件免费的 重庆时时开奖直播现场软件 大乐透基本走势带连线 快乐10分稳赚 云南时时兑奖期限 彩票大小怎么才不会输 预测大乐透最准的专家 微信单双大小大全群 大乐透复式玩法 彩仙阁计划快彩版登录 天津时时官网遗漏 ssc倍投稳赚玩法