• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 16
    • 下载费用:30 金币  

    重庆时时彩龙虎平台: 基于双链量子遗传算法的发电机组涉网参数优化方法.pdf

    关 键 词:
    基于 量子 遗传 算法 发电 机组 参数 优化 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201611046368.7

    申请日:

    2016.11.11

    公开号:

    CN106777521A

    公开日:

    2017.05.31

    当前法律状态:

    公开

    有效性:

    审中

    法律详情: 公开
    IPC分类号: G06F17/50; G06N3/12 主分类号: G06F17/50
    申请人: 国网江苏省电力公司; 江苏方天电力技术有限公司; 国家电网公司
    发明人: 徐妍; 顾文; 蒋琛; 李辰龙; 杜先波; 唐一铭; 陈中; 李云倩
    地址: 210024 江苏省南京市鼓楼区上海路215号
    优先权:
    专利代理机构: 南京钟山专利代理有限公司 32252 代理人: 戴朝荣
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611046368.7

    授权公告号:

    法律状态公告日:

    2017.05.31

    法律状态类型:

    公开

    摘要

    本发明公开了一种基于双链量子遗传算法的发电机组涉网参数优化方法,选取电网系统中发电机组需要优化的涉网参数;计算发电机组需要优化的涉网参数的约束条件和暂态稳定性最优的总目标函数;确定发电机组涉网参数的适应度函数;初始化双链量子种群;利用变异概率判断当前染色体是否变异,如果变异则进行量子位非门变异;将当前染色体的每个量子位的概率幅向解空间转换,并将转换得到的值代入暂态稳定计算程序确定暂态稳定性最优的总目标函数值,并进行适应度评价从而确定个体适应度,存储全局最优解;计算量子旋转角前进步长并更新量子门,得到下一代染色体;本发明优化发电机组的涉网参数,提高系统的暂态稳定性,实现机网协调。

    权利要求书

    1.一种基于双链量子遗传算法的发电机组涉网参数优化方法,其特征在于,包括以下
    步骤:
    步骤1:选取电网系统中发电机组需要优化的涉网参数;
    步骤2:计算发电机组需要优化的涉网参数的约束条件;
    步骤3:计算电网系统暂态稳定性最优的总目标函数;
    步骤4:根据暂态稳定性最优的总目标函数确定发电机组涉网参数的适应度函数;
    步骤5:初始化双链量子种群:种群数、染色体量子位数、最大迭代次数和变异概率,首
    先设置迭代次数为零;
    步骤6:利用变异概率判断当前染色体是否变异,如果没有变异,直接执行步骤7,如果
    变异则进行量子位非门变异;
    步骤7:将当前染色体的每个量子位的概率幅向解空间转换,从二进制转入实数,并将
    转换得到的值代入暂态稳定计算程序确定暂态稳定性最优的总目标函数值,并进行适应度
    评价从而确定个体适应度,存储全局最优解;
    步骤8:计算量子旋转角前进步长并更新量子门,得到下一代染色体;
    步骤9:判断当前迭代次数是否小于最大迭代次数,若是,跳转到步骤6执行,否则,输出
    全局最优解,结束本方法。
    2.根据权利要求1所述的基于双链量子遗传算法的发电机组涉网参数优化方法,其特
    征在于:所述的发电机组涉网参数体系中需要进行优化的参数包括励磁系统调节增益KV和
    调速器转速偏差放大倍数KJ。
    3.根据权利要求2所述的基于双链量子遗传算法的发电机组涉网参数优化方法,其特
    征在于:所述的步骤2,计算发电机组涉网参数体系中需要进行优化的参数的约束条件,约
    束条件为:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>Q</mi> <mrow> <mi>g</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>Q</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>KV</mi> <mi>min</mi> </msub> <mo>&le;</mo> <mi>K</mi> <mi>V</mi> <mo>&le;</mo> <msub> <mi>KV</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>KJ</mi> <mi>min</mi> </msub> <mo>&le;</mo> <mi>K</mi> <mi>J</mi> <mo>&le;</mo> <msub> <mi>KJ</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
    其中Pgen、Qgen为发电机组发出有功与发出无功,Pmin、Pmax分别为发电机组有功出力的上
    下限,Qmin、Qmax分别为发电机组无功出力的上下限;KV为励磁系统调节器增益,KVmin、KVmax分
    别为励磁调节增益的上下限,KVmax=2KVnorm,KVmin=0.5KVnorm;KJ为调速器调节系统转速偏
    差放大倍数,KJmin、KJmax分别为调速器转速偏差放大倍数的上下限,
    KJmax=2KJnorm,KJmin=0.5KJnorm,KVnorm为额定的励磁调节增益,KJnorm为额定的调速器转
    速偏差放大倍数。
    4.根据权利要求1所述的基于双链量子遗传算法的发电机组涉网参数优化方法,其特
    征在于:所述的步骤3包括以下步骤:
    (1)分别计算电网系统中低频暂态稳定的目标函数、高频暂态稳定的目标函数和暂态
    失稳的目标函数,具体公式如下:
    F1=max(fmin+Vmin-tst)
    F2=min(fmax+Vmax+tst)
    F3=max(tunst)
    其中F1为低频暂态稳定的目标函数值,F2为高频暂态稳定的目标函数值,F3为暂态失稳
    的目标函数值,fmin为暂态过程中的频率最低点,Vmin为暂态过程中的电压最低点,fmax为暂
    态过程中的频率最高点,Vmax为暂态过程中的电压最高点,其中fmin、Vmin、fmax和Vmax均取标幺
    值;tst为暂态波动时间,tunst为失稳时间;
    (2)暂态稳定性最优的总目标函数分为低频时暂态稳定性最优的总目标函数和高频时
    暂态稳定性最优的总目标函数;
    其中低频时暂态稳定性最优的总目标函数,具体公式如下:
    F4=aF1+bF3
    其中高频时暂态稳定性最优的总目标函数,具体公式如下:
    F5=aF2+bF3
    其中F4为低频时暂态稳定性最优的总目标函数,F5为高频时暂态稳定性最优的总目标
    函数,a+b=1,a与b分别为稳定因子与失稳因子。
    5.根据权利要求4所述的基于双链量子遗传算法的发电机组涉网参数优化方法,其特
    征在于:所述的发电机组涉网参数的适应度函数与暂态稳定性最优的总目标函数一致。
    6.根据权利要求1所述的基于双链量子遗传算法的发电机组涉网参数优化方法,其特
    征在于:所述的步骤6包括:
    (1)计算每次迭代后形成的新规模种群的平均适应度为
    其中fi为适应度函数值,m为每次迭代后形成的新规模种群数,m=1、2、3…m;
    (2)将适应度函数值大于favg的适应度值求平均得到favg',并定义△f=|favg-favg'|,根
    据△f的值判断变异概率从而判断当前染色体是否变异;
    (3)当发生变异时,随机选择若干量子位施加量子非门变换,互换参与变换的量子位两
    个概率幅。
    7.根据权利要求1所述的基于双链量子遗传算法的发电机组涉网参数优化方法,其特
    征在于:所述的步骤7中的将当前染色体的每个量子位的概率幅向解空间转换包括:
    (1)采用量子比特的概率幅作为编码,进行种群初始化,编码方式为:
    <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>|</mo> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>|</mo> <mn>...</mn> <mo>|</mo> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>|</mo> </mrow>
    其中pi表示染色体的种群个体,tij=2π×rnd,rnd为(0,1)间的随机数,i=1,2,…,m,j
    =1,2,…,n。m为种群数;n为染色体的量子位数,表示发电机组需要优化的涉网参数的个
    数,其中每条染色体包含两条并列的基因链,每一条基因链代表一组发电机组涉网参数优
    化解;
    (2)将当前染色体的每个量子位的概率幅向解空间转换,转换公式为:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>K</mi> <mrow> <mi>j</mi> <mi>&alpha;</mi> </mrow> <mi>i</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>&lsqb;</mo> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&alpha;</mi> <mi>j</mi> <mi>i</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&alpha;</mi> <mi>j</mi> <mi>i</mi> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&rsqb;</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>K</mi> <mrow> <mi>j</mi> <mi>&beta;</mi> </mrow> <mi>i</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>&lsqb;</mo> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&beta;</mi> <mi>j</mi> <mi>i</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&beta;</mi> <mi>j</mi> <mi>i</mi> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&rsqb;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
    记种群中第i代染色体pi上第j个量子位表示为xi为发电机组需要优化的涉网
    参数在约束条件下的最小取值,yi为发电机组需要优化的涉网参数在约束条件下的最大取
    值,为由量子态|0>的概率幅转换为参数约束条件内的解,为由量子态|1>的概率
    幅转换为参数约束条件内的解。
    8.根据权利要求1所述的基于双链量子遗传算法的发电机组涉网参数优化方法,其特
    征在于:所述的步骤8中的计算量子旋转角前进步长并更新量子门包括:
    (1)获取量子旋转门转角步长:
    <mrow> <msub> <mi>&Delta;&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>&Delta;&theta;</mi> <mn>0</mn> </msub> <mo>&times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <mo>&dtri;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> <mo>-</mo> <mo>&dtri;</mo> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi>min</mi> </mrow> </msub> </mrow> <mrow> <mo>&dtri;</mo> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi>max</mi> </mrow> </msub> <mo>-</mo> <mo>&dtri;</mo> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi>min</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
    其中:θij为第i代染色体中的第j个量子位的旋转角,sgn函数为取符号函数,
    θ0与θ1分别表示目前为止搜索到的全局最优解对应的量
    子位概率幅幅角与当前解的量子位概率幅幅角,为总目标函数值在点处的梯度;
    其中和分别为
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>&dtri;</mo> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>{</mo> <mo>|</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>...</mn> <mo>,</mo> <mo>|</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mi>m</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>&dtri;</mo> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>{</mo> <mo>|</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>...</mn> <mo>,</mo> <mo>|</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mi>m</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> <mo>|</mo> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    表示第i代染色体中的第j个量子位,当为i+1代时即为第i代染色体的父代染色体,
    第i代染色体为其子代染色体;
    (2)进行量子门旋转,公式为:
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>&alpha;</mi> <mi>j</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&beta;</mi> <mi>j</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>R</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>&alpha;</mi> <mi>j</mi> <mi>i</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&beta;</mi> <mi>j</mi> <mi>i</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow>
    其中与分别为染色体第i代和第i+1代的第j个量子位,为迭代差一
    代的父子代;量子旋转门R表示为:
    <mrow> <mi>R</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>cos&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>sin&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>sin&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>cos&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
    (3)利用量子门旋转对染色体中的每个量子位完成变换,按照转角函数确定转角大小
    和方向,生成新的染色体。

    说明书

    基于双链量子遗传算法的发电机组涉网参数优化方法

    技术领域

    本发明属于控制技术领域,具体涉及一种基于双链量子遗传算法的发电机组涉网
    参数优化方法。

    背景技术

    目前,分区电网与大电网间发生联络故障解列而使分区电网进入孤岛运行的系统
    暂态稳定性较差,各种有孤岛运行风险的小电网或者有发生故障进入暂态运行风险的电网
    中,导致系统的暂态稳定性差,机网协调弄能力差?;魇侵傅绯У陌踩远爸?、机
    组?;ざㄖ?、调速系统、一次调频、励磁系统、PSS的控制参数等涉及电网安全的设备和参数
    能适应电网运行方式的变化,从而导致整个电网的安全稳定性不能得到保障。

    发电机组的涉网参数一般被分为励磁系统、调速系统、AGC和AVC等四类。对于发电
    机各种参数的研究目前已经趋于成熟,但是对机组涉网参数的研究,尤其是对参数优化以
    实现机网协调并提高电网系统性能的研究尚未推广。

    发明内容

    本发明所要解决的技术问题是针对上述现有技术的不足提供一种基于双链量子
    遗传算法的发电机组涉网参数优化方法,本基于双链量子遗传算法的发电机组涉网参数优
    化方法通过优化发电机组的涉网参数,提高系统的暂态稳定性,实现机网协调。

    为实现上述技术目的,本发明采取的技术方案为:

    一种基于双链量子遗传算法的发电机组涉网参数优化方法,包括以下步骤:

    步骤1:选取电网系统中发电机组需要优化的涉网参数;

    步骤2:计算发电机组需要优化的涉网参数的约束条件;

    步骤3:计算电网系统暂态稳定性最优的总目标函数;

    步骤4:根据暂态稳定性最优的总目标函数确定发电机组涉网参数的适应度函数;

    步骤5:初始化双链量子种群:种群数、染色体量子位数、最大迭代次数和变异概
    率,首先设置迭代次数为零;

    步骤6:利用变异概率判断当前染色体是否变异,如果没有变异,直接执行步骤7,
    如果变异则进行量子位非门变异;

    步骤7:将当前染色体的每个量子位的概率幅向解空间转换,从二进制转入实数,
    并将转换得到的值代入暂态稳定计算程序确定暂态稳定性最优的总目标函数值,并进行适
    应度评价从而确定个体适应度,存储全局最优解;

    步骤8:计算量子旋转角前进步长并更新量子门,得到下一代染色体;

    步骤9:判断当前迭代次数是否小于最大迭代次数,若是,跳转到步骤6执行,否则,
    输出全局最优解,结束本方法。

    作为本发明进一步改进的技术方案,所述的发电机组涉网参数体系中需要进行优
    化的参数包括励磁系统调节增益KV和调速器转速偏差放大倍数KJ。

    作为本发明进一步改进的技术方案,所述的步骤2,计算发电机组涉网参数体系中
    需要进行优化的参数的约束条件,约束条件为:


    其中Pgen、Qgen为发电机组发出有功与发出无功,Pmin、Pmax分别为发电机组有功出力
    的上下限,Qmin、Qmax分别为发电机组无功出力的上下限;KV为励磁系统调节器增益,KVmin、
    KVmax分别为励磁调节增益的上下限,KVmax=2KVnorm,KVmin=0.5KVnorm;KJ为调速器调节系统
    转速偏差放大倍数,KJmin、KJmax分别为调速器转速偏差放大倍数的上下限,KJmax=2KJnorm,
    KJmin=0.5KJnorm,KVnorm为额定的励磁调节增益,KJnorm为额定的调速器转速偏差放大倍数。

    作为本发明进一步改进的技术方案,所述的步骤3包括以下步骤:

    (1)分别计算电网系统中低频暂态稳定的目标函数、高频暂态稳定的目标函数和
    暂态失稳的目标函数,具体公式如下:

    F1=max(fmin+Vmin-tst)

    F2=min(fmax+Vmax+tst)

    F3=max(tunst)

    其中F1为低频暂态稳定的目标函数值,F2为高频暂态稳定的目标函数值,F3为暂态
    失稳的目标函数值,fmin为暂态过程中的频率最低点,Vmin为暂态过程中的电压最低点,fmax
    为暂态过程中的频率最高点,Vmax为暂态过程中的电压最高点,其中fmin、Vmin、fmax和Vmax均取
    标幺值;tst为暂态波动时间,tunst为失稳时间;

    (2)暂态稳定性最优的总目标函数分为低频时暂态稳定性最优的总目标函数和高
    频时暂态稳定性最优的总目标函数;

    其中低频时暂态稳定性最优的总目标函数,具体公式如下:

    F4=aF1+bF3

    其中高频时暂态稳定性最优的总目标函数,具体公式如下:

    F5=aF2+bF3

    其中F4为低频时暂态稳定性最优的总目标函数,F5为高频时暂态稳定性最优的总
    目标函数,a+b=1,a与b分别为稳定因子与失稳因子。

    作为本发明进一步改进的技术方案,所述的发电机组涉网参数的适应度函数与暂
    态稳定性最优的总目标函数一致。

    作为本发明进一步改进的技术方案,所述的步骤6包括:

    (1)计算每次迭代后形成的新规模种群的平均适应度为其中fi为适
    应度函数值,m为每次迭代后形成的新规模种群数,m=1、2、3…m;

    (2)将适应度函数值大于favg的适应度值求平均得到favg',并定义△f=|favg-favg'
    |,根据△f的值判断变异概率从而判断当前染色体是否变异;

    (3)当发生变异时,随机选择若干量子位施加量子非门变换,互换参与变换的量子
    位两个概率幅。

    作为本发明进一步改进的技术方案,所述的步骤7中的将当前染色体的每个量子
    位的概率幅向解空间转换包括:

    (1)采用量子比特的概率幅作为编码,进行种群初始化,编码方式为:


    其中pi表示染色体的种群个体,tij=2π×rnd,rnd为(0,1)间的随机数,i=1,
    2,…,m,j=1,2,…,n。m为种群数;n为染色体的量子位数,表示发电机组需要优化的涉网参
    数的个数,其中每条染色体包含两条并列的基因链,每一条基因链代表一组发电机组涉网
    参数优化解;

    (2)将当前染色体的每个量子位的概率幅向解空间转换,转换公式为:


    记种群中第i代染色体pi上第j个量子位表示为xi为发电机组需要优化的
    涉网参数在约束条件下的最小取值,yi为发电机组需要优化的涉网参数在约束条件下的最
    大取值,为由量子态|0>的概率幅转换为参数约束条件内的解,为由量子态|1>的
    概率幅转换为参数约束条件内的解。

    作为本发明进一步改进的技术方案,所述的步骤8中的计算量子旋转角前进步长
    并更新量子门包括:

    (1)获取量子旋转门转角步长:


    其中:θij为第i代染色体中的第j个量子位的旋转角,sgn函数为取符号函数,
    θ0与θ1分别表示目前为止搜索到的全局最优解对应的量子位
    概率幅幅角与当前解的量子位概率幅幅角,为总目标函数值在点处的梯度;其中
    和分别为



    表示第i代染色体中的第j个量子位,当为i+1代时即为第i代染色体的父代染色
    体,第i代染色体为其子代染色体。

    (2)进行量子门旋转,公式为:


    其中与分别为染色体第i代和第i+1代的第j个量子位,为迭
    代差一代的父子代;量子旋转门R表示为:


    (3)利用量子门旋转对染色体中的每个量子位完成变换,按照转角函数确定转角
    大小和方向,生成新的染色体。

    本发明提高分区电网与大电网间发生联络故障解列而使分区电网进入孤岛运行
    的系统暂态稳定性,由此也可以引申应用于各种有孤岛运行风险的小电网或者有发生故障
    进入暂态运行风险的电网中,通过优化发电机组的涉网参数,提高系统的暂态稳定性,实现
    机网协调;双链量子遗传算法是一种高效且有记忆功能的优化算法,利用量子概率幅编码
    构造约束解空间内的随机值;利用量子旋转门更新概率幅相位使染色体产生代际优化,在
    种群规模内寻找最优解;利用量子位非门变异模拟种群的基因变异,增加种群多样性以防
    止其早熟。在寻优过程中,每条染色体上均含有两条基因链,可以分别独立寻找最优解,提
    高了传统遗传算法的速度与效率,能够快速有效地对模型进行优化求解。本发明提出了评
    估电力系统暂态稳定性的函数,并建立了针对系统暂态稳定性的优化模型,能够高效快速
    地对发电机组涉网参数进行优化,提高电力系统故障后的暂态稳定性,同时实现机网协调
    的目标。

    附图说明

    图1是分区电网暂态稳定频率变化情况仿真图。

    图2是分区电网暂态失稳频率变化情况仿真图。

    图3是暂态过程中发电机组最优参数与初始参数的频率变化情况对比示意图。

    图4是基于DCQGA算法的发电机组涉网参数优化流程图。

    具体实施方式

    下面根据图1至图4对本发明的具体实施方式作出进一步说明:

    本发明针对背景技术的缺陷,在双链量子遗传算法的基础上提出了一种基于双链
    量子遗传算法的发电机组涉网参数优化方法,下面对其做出具体说明,包括以下步骤:

    步骤1:选取电网系统中发电机组需要优化的涉网参数;

    首先,对不同的发电机组涉网参数进行比较与选择,建立影响机网协调的发电机
    组可调涉网参数体系,分为励磁系统、调速系统、AGC、AVC四类参数,从中选择需要进行优化
    的参数,本实施例主要选取励磁系统调节增益KV和调速器转速偏差放大倍数KJ作为优化参
    数,即为模型中的自变量。

    步骤2:计算发电机组需要优化的涉网参数的约束条件;

    (1)励磁系统调节器增益约束

    KVmin≤KV≤KVmax

    其中KV为励磁系统调节器增益,KVmin、KVmax分别为励磁调节增益的上下限,KVmax=
    2KVnorm,KVmin=0.5KVnorm;KVnorm为额定的励磁调节增益;

    (2)调速器调节系统转速偏差放大倍数约束

    KJmin≤KJ≤KJmax

    其中KJ为调速器调节系统转速偏差放大倍数,KJmin、KJmax分别为调速器转速偏差
    放大倍数的上下限,KJmax=2KJnorm,KJmin=0.5KJnorm,KJnorm为额定的调速器转速偏差放大倍
    数;

    (3)另外在电网系统与发电机组中还存在着许多变量约束条件,主要以优化采用
    的发电机组涉网参数变化所影响的变量作为变量约束考虑范围,以发电机组输出有功和无
    功为例:


    其中Pgen、Qgen为发电机组发出有功与发出无功,Pmin、Pmax分别为发电机组有功出力
    的上下限,Qmin、Qmax分别为发电机组无功出力的上下限。

    步骤3:计算电网系统暂态稳定性最优的总目标函数;

    一般情况下,当发生故障后,电网即进入暂态过程,瞬间必将面临功率不平衡的问
    题,需要通过后续的发电机组调节动作进行功率再平衡。如果电网内功率缺额在发电机组
    发电容量裕度的范围之内(△W<mrg(Wgen))且发电机组能够做出正确而迅速的调节动作,则
    其能够保持暂态稳定;反之,如果电网功率缺额超过了发电机组的发电量裕度范围(△W>
    mrg(Wgen)),那么其必将失去暂态稳定。因此分别对两种暂态情况选取暂态稳定性判断因
    素;

    (1)暂态稳定状态:

    当故障后电网系统产生低频问题时,发电机组需要进行增发调节。选择暂态过程
    中的频率最低点fmin、电压最低点Vmin与暂态波动时间tst作为判断因素,低频暂态稳定性最
    优的目标函数值为:

    F1=max(fmin+Vmin-tst)

    其中该优化目标函数的意义为要求暂态过程中的频率最低值fmin、电压最低值Vmin
    最大,即频率与电压的下降程度最小(其中fmin与Vmin均取标幺值);要求重新达到稳定状态
    的时间tst最短,即发生暂态波动的时间最短;

    当故障后电网产生高频问题,则发电机组需要进行减发调节。选择暂态过程中的
    频率最高点fmax、电压最高点Vmax和暂态波动时间tst作为判断因素,高频暂态稳定性最优的
    目标函数值为:

    F2=min(fmax+Vmax+tst)

    其中该优化目标函数的意义为要求暂态过程中的频率最高值fmin、电压最高值Vmin
    最小,即频率与电压的上升程度最小(其中fmin与Vmin均取标幺值);要求重新达到稳定状态
    的时间tst最短,即发生暂态波动的时间最短;

    (2)暂态失稳状态

    根据暂态失稳定义,在发生暂态失稳时将无法通过调节发电机组出力使系统达到
    稳定,最终发电机组将失步并使整个系统暂态失稳。选取电网系统内最大一台发电机以该
    系统内另一台发电机为参考机的功角差△δ作为观察对象,△δ>180°的时刻作为失稳时间
    tunst的取值,则暂态稳定性最优的目标函数制定为:

    F3=max(tunst)

    其中该优化目标函数的意义为要求失稳时间tunst尽量大,为电网系统的安控措施
    动作与人工干预争取时间。

    (3)总目标函数的确定

    在实际的电网系统中,发生故障之后能否保持暂态稳定不是一成不变的,在不同
    的运行场景中都将有可能发生改变。将暂态稳定和暂态失稳两种情况合并考虑,得到总目
    标函数:

    其中低频时暂态稳定性最优的总目标函数,具体公式如下:


    其中高频时暂态稳定性最优的总目标函数,具体公式如下:


    频率与电压值均取标幺值,时间单位为秒,F4为低频时暂态稳定性最优的总目标
    函数,F5为高频时暂态稳定性最优的总目标函数,a+b=1,a与b分别为稳定因子与失稳因
    子。

    考虑不同负荷场景下电网暂态过程的不同表现,可以得到a与b的值,之后再选取
    较为典型的暂态稳定与暂态失稳对应实例对F1与F2进行计算,最终可以计算出暂态稳定最
    优的总目标函数F。一般来说,如果在电网的各种运行场景中分区孤网都能够保证暂态稳
    定,那么a取1,b取0;如果在电网的各种运行场景中分区孤网都发生了暂态失稳,那么a取0,
    b取1;出于对暂态稳定的保守考虑,可以取b为较大值,在考虑过程中更加倾向于可能发生
    的暂态失稳优化。

    取分区电网的例子,其与大电网通过联络线相连,但存在极小概率发生各联络线
    因故障断开使分区电网进入孤岛运行的风险。经过调查与仿真,发现在不同的负荷运行场
    景下分区电网的负荷功率与发电机组发出有功之间始终存在正功率缺额,故障发生后分区
    孤网系统均将出现瞬间低频现象。其中负荷较高的几种运行场景中,发生故障后分区孤网
    系统不能维持暂态稳定,某场景中频率变化情况见图2;而负荷较低的几种运行场景中,发
    生故障后分区孤网系统能够保持暂态稳定,某场景中频率变化情况见图1。在调查的场景
    中,暂态稳定情况与暂态失稳情况各占一半,所以在形成目标函数时选择a=b=0.5,取a=
    b=0.5即可形成具体的目标函数,也形成了完整的优化模型。

    步骤4:根据暂态稳定性最优的总目标函数确定发电机组涉网参数的适应度函数;
    将暂态稳定性最优的总目标函数作为发电机组涉网参数的适应度函数。

    步骤5:初始化双链量子种群:种群数、染色体量子位数、最大迭代次数和变异概
    率,首先设置迭代次数为零。

    步骤6:利用变异概率判断当前染色体是否变异,如果没有变异,直接执行步骤7,
    如果变异则进行量子位非门变异;具体包括以下步骤:

    (1)计算每次迭代后形成的新规模种群的平均适应度为其中fi为适
    应度函数值,m为每次迭代后形成的新规模种群数,m=1、2、3…m;

    (2)将适应度函数值大于favg的适应度值求平均得到favg',并定义△f=|favg-favg'
    |,根据△f的值判断变异概率从而判断当前染色体是否变异,如果△f<0.01则说明种群趋
    于早熟,多样性遭到了破坏。所以在进行遗传迭代寻优时需要考虑增加种群的多样性,引入
    量子位非门变异,在运行算法的时候,对于每一代染色体均施以一定的变异概率;

    (3)当发生变异时,随机选择若干量子位施加量子非门变换,使参与变换的量子位
    两个概率幅互换,这样可以使两条基因链同时得到变异。这种变异实际上是对量子位概率
    幅幅角的正向旋转,其模拟了基因变异的现象,能够有效降低种群早熟的风险;

    步骤7:将当前染色体的每个量子位的概率幅向解空间转换,从二进制转入实数,
    并将转换得到的值代入暂态稳定计算程序确定暂态稳定性最优的总目标函数值,并进行适
    应度评价从而确定个体适应度,存储全局最优解;具体包括以下步骤:

    (1)采用量子比特的概率幅作为编码,进行种群初始化,编码方式为:


    其中pi表示染色体的种群个体,tij=2π×rnd,rnd为(0,1)间的随机数,i=1,
    2,…,m,j=1,2,…,n。m为种群数;n为染色体的量子位数,表示发电机组需要优化的涉网参
    数的个数,其中每条染色体包含两条并列的基因链,每一条基因链代表一组发电机组涉网
    参数优化解;

    (2)将当前染色体的每个量子位的概率幅向解空间转换,转换公式为:


    记种群中第i代染色体pi上第j个量子位表示为xi为发电机组需要优化的
    涉网参数在约束条件下的最小取值,yi为发电机组需要优化的涉网参数在约束条件下的最
    大取值,为由量子态|0>的概率幅转换为参数约束条件内的解,为由量子态|1>的
    概率幅转换为参数约束条件内的解。在寻优过程中,每条染色体上均含有两条基因链,可
    以分别独立寻找最优解,提高了传统遗传算法的速度与效率,能够快速有效地对模型进行
    优化求解。

    (3)将上述转换得到的值代入暂态稳定计算程序确定与其相对应的频率、电压和
    时间,并将其进行计算获得暂态稳定性最优的总目标函数值,并进行适应度评价从而确定
    个体适应度,存储全局最优解;

    步骤8:计算量子旋转角前进步长并更新量子门,得到下一代染色体;具体包括以
    下步骤:

    (1)获取量子旋转门转角步长:


    其中:θij为第i代染色体中的第j个量子位的旋转角,sgn函数为取符号函数,
    θ0与θ1分别表示目前为止搜索到的全局最优解对应的量子位
    概率幅幅角与当前解的量子位概率幅幅角,为总目标函数值在点处的梯度;其中
    和分别为



    表示第i代染色体中的第j个量子位,当为i+1代时即为第i代染色体的父代染色
    体,第i代染色体为其子代染色体;

    通过转角步长函数将能够确定转角的大小与方向。利用这样的方法,能够将目标
    函数在搜索点处的变化趋势加入转角步长的计算中,当变化率较大时则减小转角步长,变
    化率较小时增大转角步长,相对智能且高效地灵活改变步长,使搜索速度加快的同时也不
    会错过最优解;

    (2)进行量子门旋转,公式为:


    其中与分别为染色体第i代和第i+1代的第j个量子位,为迭代
    差一代的父子代;量子旋转门R表示为:


    (3)利用量子门旋转对染色体中的每个量子位完成变换,按照转角函数确定转角
    大小和方向,生成新的染色体。

    步骤9:判断当前迭代次数是否小于最大迭代次数,若是,跳转到步骤6执行,否则,
    输出全局最优解,结束本方法。

    将全局最优解对应的发电机组涉网参数与原发电机组涉网参数在某相同负荷运
    行场景中仿真,得到二者的频率变化比对曲线见图3,可以明显发现低频现象中电网系统的
    频率最低点有所抬升、暂态波动时间有明显减小,优化之后系统的暂态稳定性得到了提高,
    也验证了这一发明的正确性与可行性。

    一种基于双链量子遗传算法对发电机组涉网参数的优化方法流程如图4所示:

    (1)获取线路、负荷节点和发电机组具体信息,输入系统的原始数据;

    (2)初始化种群,设置迭代次数为零;

    (3)对目前的染色体施加一定的变异概率,如果需要变异则进行量子位非门变异;

    (4)将目前染色体中的个体数据向解空间解码,从二进制转入实数,并判断各项数
    据是否满足函数的各约束条件,如果满足则将各参数代入暂态稳定计算程序,进行相关计
    算;

    (5)对上一步计算得到的暂态稳定性最优目标函数值进行适应度评价,并记录当
    前的最佳值;

    (6)计算量子旋转角前进步长并更新量子门,得到下一代染色体;

    (7)判断迭代结束条件,如果迭代次数已达到预设的种群规模,则输出迭代过程中
    记录的最优结果,否则迭代次数加1,并返回步骤(3)继续迭代。

    本发明利用量子概率幅编码构造约束解空间内的随机值;利用量子旋转门更新概
    率幅相位使染色体产生代际优化,在种群规模内寻找最优解;利用量子位非门变异模拟种
    群的基因变异,增加种群多样性以防止其早熟。在寻优过程中,每条染色体上均含有两条基
    因链,可以分别独立寻找最优解,提高了传统遗传算法的速度与效率,能够快速有效地对模
    型进行优化求解。本发明提出了评估电力系统暂态稳定性的函数,并建立了针对系统暂态
    稳定性的优化模型,能够高效快速地对发电机组涉网参数进行优化,提高电力系统故障后
    的暂态稳定性,同时实现机网协调的目标。

    本发明的?;し段Оǖ幌抻谝陨鲜凳┓绞?,本发明的?;し段б匀ɡ笫?br />为准,任何对本技术做出的本领域的技术人员容易想到的替换、变形、改进均落入本发明的
    ?;し段?。

    关于本文
    本文标题:基于双链量子遗传算法的发电机组涉网参数优化方法.pdf
    链接地址://www.4mum.com.cn/p-6028073.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 11选5算法计划软件 腾飞彩票怎么玩稳赚 蘑菇街拍照赚钱 吉林十一选五技巧中奖方法 玩数字三彩票技巧规律 浙江快乐彩12选5中奖规则 北京pk10怎么玩 可以赚钱的h5网站 吉林体彩11选五的走势图 算下期平码公式 2走势图分析 双色球历史开奖结果 ag金拉霸老虎机压分 重庆时时五星基本走势 外卖牛肉饭怎么赚钱 陕西快乐10怎么选号