• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 11
    • 下载费用:30 金币  

    重庆时时彩卡奖是什么: 一种基于KPCA多表索引图像哈希检索方法.pdf

    关 键 词:
    一种 基于 KPCA 索引 图像 检索 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201710054383.4

    申请日:

    2017.01.22

    公开号:

    CN106815362A

    公开日:

    2017.06.09

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 著录事项变更IPC(主分类):G06F 17/30变更事项:申请人变更前:福州大学变更后:福州大学变更事项:地址变更前:350002 福建省福州市鼓楼区工业路523号变更后:350301 福建省福州市福清市西环北路36号国家级融侨经济技术开发区福州大学福清研究院|||实质审查的生效IPC(主分类):G06F 17/30申请日:20170122|||公开
    IPC分类号: G06F17/30 主分类号: G06F17/30
    申请人: 福州大学
    发明人: 郭太良; 叶芸; 林志贤; 林金堂; 邓清文
    地址: 350002 福建省福州市鼓楼区工业路523号
    优先权:
    专利代理机构: 福州元创专利商标代理有限公司 35100 代理人: 蔡学俊;薛金才
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201710054383.4

    授权公告号:

    ||||||

    法律状态公告日:

    2017.09.22|||2017.07.04|||2017.06.09

    法律状态类型:

    著录事项变更|||实质审查的生效|||公开

    摘要

    本发明提供一种基于KPCA多表索引的图像哈希检索方法,其包括以下步骤:区分性特征选取,特征聚类以及多表索引构建以及哈希编码的优化。本发明在训练哈希投影函数之前,首先,通过基于核函数的主元分析从图像特征维度中,选取具有区分能力的特征作为训练集,并在此基础上,利用特征聚类的方法获取不同语义样本的聚类中心,找出每类的多个最佳近邻类,最后对聚类空间进行层次划分,构造多个索引表。在检索时,通过查询多张哈希索引表以此提高检索的性能。本发明将高维的图像特征映射成简单的二值码,节省了数据的存储空间;解决采用单表索引结构时,相似图像之间的离散度相差较大,或者是相似特征属性分布区间较大,即原本是相似的特征,而被映射到不同哈希编码等问题。

    权利要求书

    1.一种基于KPCA多表索引图像哈希检索方法,其特征在于,包括以下步骤:
    步骤S1:对原始高维的特征进行特征提取,采用KPCA方式获取区分性强的特征作为训
    练集;
    步骤S2:采用改进的k-means聚类算法,计算特征库中任意两个样本点特征向量xi和xj
    之间的欧几里得距离dis(xi,xj),找到两个距离最远的样本特征c0和c1,计算c0和c1中间点
    c2,并将这三个样本点作为初始聚类中心;对步骤S1得到的区分性特征进行聚类量化处理,
    将不同特征的多类样本n分到k个不同的组里面,并选取特征聚类中心进行二次筛选找到每
    类的λ个相邻类,并将这些相邻类归为一组相似簇,用于学习强判别性的哈希编码函数;
    步骤S3:构建多组哈希函数,根据多组哈希函数将特征库的所有样本特征和查询样本
    特征建立哈希索引,并将这些索引号映射到多个哈希索引表里,在查询相似样本特征时,通
    过检索多个哈希表,提高相似样本的召回率。
    2.根据权利要求1所述的基于KPCA多表索引图像哈希检索方法,其特征在于:步骤S1包
    括以下具体步骤:
    step1、从特征库Rn×m中随机的选取部分样本集作为初始训练集
    X={x1,x2,...,xn}∈Rn×m;
    Step2、选择合适的核函数k(x,xi),计算训练集的核矩阵K;
    Step3、根据核矩阵K,计算前k个最大的特征值λk及对应的特征向量v;
    λk:{λ1k,λ2k,...,λkk},v:{v1,v2,...,vk}
    Step4、选取k个最大的特征值对应的特征向量v,构造最佳投影矩阵uT
    uT={v1,v2,...,vk}T
    Step5、计算核矩阵在投影矩阵uT上的投影X′=uTK
    即所得的投影X′为原始特征中降低维度后的易于区分的样本特征。
    3.根据权利要求1所述的基于KPCA多表索引图像哈希检索方法,其特征在于:步骤S3中
    每一组哈希函数的构建过程包括以下步骤:
    定义:超几何中垂面
    <mrow> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>&mu;</mi> <mi>j</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow>
    其中Ci,μj表示相似簇和其中一个子集聚类中心,推导相应的哈希函数如下:
    其中
    由上可知,假设哈希编码的长度为L,特征聚类最终得到L个相似簇,并且每个相似簇ζ
    包含λ个相似类,从而得到λ组哈希函数,每组哈希函数对应一个投影矩阵
    其中表示每个相似簇的中心与其中相似类中心的中垂面;最终
    得到λ个投影矩阵并构建λ个哈希函数,最终原始的高维图像特征将被哈希映射为λ个索引
    码,并对应λ个哈希索引表,其中每个索引编码长度为L。

    说明书

    一种基于KPCA多表索引图像哈希检索方法

    技术领域

    本发明属于图像检索领域,涉及到基于内容的图像检索方法,适用于大规模图像
    检索及高维数据的最近邻搜索。

    背景技术

    20世纪70年代的图像数据库管理系统是对图像的语义内容进行人工标注,并采用
    传统的数据库技术或者文本信息检索技术对相似图像的语义关键字进行存储和索引。其优
    点是基于成熟的数据库检索技术及文本内容索引技术,检索速度比较理想。但Web页面是与
    图像关联的文字信息而不是与图像内容有关的特征信息,导致索引的结果部分不符合用户
    的要求,而且随着大数据时代的到来,图像数据规模增长速度达到指数级,这种主观性和不
    一致性的人工标注逐渐暴露出效率底下等缺陷。

    为了解决基于人工标注的文本检索缺陷,1980年开始出现基于内容的图像检索技
    术,其方法是通过提取图像特征并建立索引,然后计算比较这些图像库中图像的特征和查
    询图像特征之间的距离,来决定两个图像的相似度。然而,这样必能存在两个重要的问题:
    1)图像特征往往是一种高维化的数据,高维数据的存储要求高,计算效率和类与类之间的
    区分性较低;2)对大规模数据进行线性搜索很难满足效率要求。因此,如何对图像高维特征
    进行有效索引成为一个亟需解决的问题。研究人员在这方面最早提出了以树形结构索引算
    法,主要以树形结构索引算法?;谑鞯牟檎曳椒ㄈ纾簁d-tree,M-tree,cover-tree,
    metric-tree等方法,然而,树形索引结构提高了检索速度,但所需的存储空间大,难以适应
    大规模数据检索的要求。

    于此同时,基于哈希的相似度查询方法倍受关注?;诠5南嗨贫炔檎曳椒ㄊ?br />将数据映射到低维度的汉明空间,也就是二值哈希编码。通过查找哈希表的方式,在计算查
    询样本点和数据库中的样本点的相似度时只需要简单的位操作运算,并且拥有良好的存储
    效率。

    Chum等人将局部敏感的哈希算法(Locality-Sensitive Hashing,简称LSH)引入
    到图像哈希索引技术当中,其利用随机投影的方式对样本点特征进行哈希,通过构建一组
    哈希函数,将n维的原始特征索引成d维(d<<n),其形式定义:对于集合S,集合内元素间相似
    度计算公式为sim(a,b)。如果存在一个哈希函数h(*)满足以下条件:存在一个相似度S到概
    率P的单调递增映射关系,使得S中的任意两个元素满足,如果sim(a,b)≤R,则有P{h(a)=h
    (b)}≥P1;如果sim(a,b)≥(1+ξ)R则有P{h(a)≠h(b)}≤P2,其中ξ>0,P1>P2。2006年,Andoni
    等人又提出了Min哈希其对LSH哈希函数族进行了扩展,构造了ls范数距离下的LSH哈希函
    数,将空间随机分割为固定宽度的单元,每个单元代表一个桶,通过ls和Jaccard系数作为
    近似最近邻检索的度量标准。对于高维核数据,当核函数未知情况下,LSH类方法的检索效
    果并不好。为了解决这个问题,Kulisd等人将LSH扩展为核位置敏感的哈希(Kernelized
    Locality-Sensitive Hashing,简称KLSH)。然而这类LSH算法采用与特征无关随机投影的
    方式构建哈希函数,因此为了增加哈希码的碰撞概率,需要较多的超平面对数据进行分割
    投影才能达到令人满意的准确率。近年来,研究者为了克服LSH方法的缺点,提出了一系列
    的基于机器学习的哈希函数算法,利用数据局部性的特性,通过哈希函数将高维特征映射
    为紧凑的二进制编码,降低了检索时间的复杂度。这些算法中最具有代表性的是利用主成
    分分析(Principle Component Analysis Hashing,简称PCAH)进行降维,从而对特征实现
    索引,相对于随机的投影方式产生哈希函数的算法而言,该算法构建哈希函数依赖数据本
    身,提高了检索的准确率。这类算法还包括Weiss等人提出的谱哈希算法(Spectral
    Hashing,简称SpH)。通过谱分析,利用服从p(x)分布的n个离散数据点求拉普拉斯的特征方
    程求解。为了使算法的性能随着哈希编码长度的增加而得到提升,Cheng Li等人采用了和
    局部敏感的哈希算法类似的框架,利用了数据的几何结构特征产生投影向量,提出了一种
    密度敏感的哈希算法(Density Sensitive Hashing,简称DSH),即使在较短的哈希编码时,
    密度敏感的算法在检索性能上也得到了相应的提升。此外,YunChao Gong等人提出了迭代
    量化哈希算法(Iterative Quantization Hashing,简称ITQ)通过对相互正交的投影进行
    旋转,最小化哈希函数的实数值输出和当前哈希编码之间的差值的平方和来构建哈希函
    数,使得二值哈希编码的均衡性大大增加,性能也随之得到显著的改善。

    然而,现有的方法需要解决一个问题,图像特征通过哈希映射函数编码成二值哈
    希码,这些映射函数不仅需要很强的判别性,而且能够区分多类特征,否则难以保证检索的
    准确性。而现有的单表索引结构的哈希方法,通常很难学习到这样的映射函数,因此,如何
    在编码位数相同的情况下,使学习到的哈希函数得到更高的检索性能,本发明在构造哈希
    映射之前,先通过核主成分分析(Kernel Principle Component Analysis,KPCA)提取图像
    特征库中,易于区分性的特征作为哈希函数训练集,并构造多个哈希索引表的方式来解决
    此问题。

    发明内容

    本发明目的在于为大规模图像哈希检索提供一种基于KPCA判别性更强的多表索
    引结构的查询方法(简称PMTH),为了避免采用单表索引结构时,相似图像之间的离散度相
    差较大,或者是相似特征属性分布区间较大,即原本是相似的特征,而被映射到不同哈希编
    码。导致相似的样本点,在哈希检索时被遗漏。因此,本发明通过KPCA方法,获取图像特征库
    中易于区分的特征,并通过聚类的方式学习得到多组哈希函数,最后将图像特征映射为多
    串哈希码,生成多个索引表的查询结构。在编码位数相同的情况下,通过查询多个索引表的
    方式,并在每个索引表中计算查询图像哈希系列与待检索图像哈希系列的汉明距离,设定
    阈值返回相似样本,以此提高检索的性能。

    为实现上述目的,本发明采用如下技术方案:一种基于KPCA多表索引图像哈希检
    索方法,其包括以下步骤:步骤S1:对原始高维的特征进行特征提取,采用KPCA方式获取区
    分性强的特征作为训练集;步骤S2:采用改进的k-means聚类算法,计算特征库中任意两个
    样本点特征向量xi和xj之间的欧几里得距离dis(xi,xj),找到两个距离最远的样本特征c0和
    c1,计算c0和c1中间点c2,并将这三个样本点作为初始聚类中心;对步骤S1得到的区分性特
    征进行聚类量化处理,将不同特征的多类样本n分到k个不同的组里面,并选取特征聚类中
    心进行二次筛选找到每类的λ个相邻类,并将这些相邻类归为一组相似簇,用于学习强判别
    性的哈希编码函数;

    步骤S3:构建多组哈希函数,根据多组哈希函数将特征库的所有样本特征和查询
    样本特征建立哈希索引,并将这些索引号映射到多个哈希索引表里,在查询相似样本特征
    时,通过检索多个哈希表,提高相似样本的召回率。

    进一步的,步骤S1包括以下具体步骤:

    step1、从特征库Rn×m中随机的选取部分样本集作为初始训练集

    X={x1,x2,...,xn}∈Rn×m;

    Step2、选择合适的核函数k(x,xi),计算训练集的核矩阵K;

    Step3、根据核矩阵K,计算前k个最大的特征值λk及对应的特征向量v;

    λk:{λ1k,λ2k,...,λkk},v:{v1,v2,...,vk}

    Step4、选取k个最大的特征值对应的特征向量v,构造最佳投影矩阵uT

    uT={v1,v2,...,vk}T

    Step5、计算核矩阵在投影矩阵uT上的投影X′=uTK

    即所得的投影X′为原始特征中降低维度后的易于区分的样本特征。

    进一步的,步骤S3中每一组哈希函数的构建过程包括以下步骤:

    定义:超几何中垂面


    其中Ci,μj表示相似簇和其中一个子集聚类中心,推导相应的哈希函数如下:

    其中

    由上可知,假设哈希编码的长度为L,特征聚类最终得到L个相似簇,并且每个相似
    簇ζ包含λ个相似类,从而得到λ组哈希函数,每组哈希函数对应一个投影矩阵
    其中表示每个相似簇的中心与其中相似类中心的中垂面;最终
    得到λ个投影矩阵并构建λ个哈希函数,最终原始的高维图像特征将被哈希映射为λ个索引
    码,并对应λ个哈希索引表,其中每个索引编码长度为L。

    与现有技术相比,本发明具有以下优点:

    1.本发明是基于学习方式获取哈希编码方法的一种,利用KPCA方式,获取易于区
    分的特征作为训练集,构建判别性更强的哈希函数,克服了基于随机投影的哈希算法中哈
    希编码函数判别不强,导致检索性能不高的缺陷。

    2.克服了单表索引结构中因汉明距离增大而导致检索的负样本数增加,或者因相
    似特征属性分布区间较大,导致相似的样本点,在哈希检索时被遗漏等缺陷,本发明融合改
    进的k-means算法,对特征进行聚类后的类心,用于构建多个索引表。在编码位数相同的情
    况下,通过查找多个索引表的方式提高相似样本的召回率。

    附图说明

    图1是样本原始特征经过PCA-2D特征提取示意图。

    图2是样本原始特征经过KPCA-2D特征提取示意图。

    图3是哈希函数训练之前的图像特征聚类后的特征分布示意图。

    图4是构造多表索引时筛选的最佳相似近邻类示意图。

    图5是在公开数据集Caltech-256 1024维CNN特征下与其他六种方法对比,在不同
    的编码位数情况下的平均准确率(Map)示意图。

    图6是在公开数据集CIFIR-10 512维GIST特征下与其他六种方法对比,在不同的
    编码位数情况下的平均准确率(Map)示意图。

    具体实施方式

    下面结合附图和具体实施例对本发明做进一步解释说明。

    本发明提供一种基于KPCA多表索引图像哈希检索方法,在训练哈希编码函数之
    前,先对原始高维的特征进行特征提取,采用KPCA方式获取区分性强的特征作为训练集。具
    体包括以下步骤:步骤S1:对原始高维的特征进行特征提取,采用KPCA方式获取区分性强的
    特征作为训练集;步骤S2:采用改进的k-means聚类算法,计算特征库中任意两个样本点特
    征向量xi和xj之间的欧几里得距离dis(xi,xj),找到两个距离最远的样本特征c0和c1,计算
    c0和c1中间点c2,并将这三个样本点作为初始聚类中心。对步骤S1得到的区分性特征进行聚
    类量化处理,将不同特征的多类样本n分到k个不同的组里面,并选取特征聚类中心进行二
    次筛选找到每类的λ个相邻类,并将这些相邻类归为一组相似簇,用于学习强判别性的哈希
    编码函数;步骤S3:构建多组哈希函数,根据多组哈希函数将特征库的所有样本特征和查询
    样本特征建立哈希索引,并将这些索引号映射到多个哈希索引表里,在查询相似样本特征
    时,通过检索多个哈希表,提高相似样本的召回率。

    结合图1进一步详细说明,如果在原始高维特征中直接用主成分分析(Principle
    Component Analysis,pca)进行降维,其根据最大方差理论,取原始图像特征的前N个最大
    特征值对应的特征向量作为投影矩阵,这样原始高维的图像特征经过投影后特征维度降低
    的同时又获得的特征方差大,以便于特征区分,如图1所示,特征区分性并不明显。因此,本
    发明为了获得区分性更强的特征,通过核函数将不易区分的特征映射到核希尔伯特空间,
    然后再进行PCA,获取易于区分的特征作为哈希编码函数的训练集,如图2所示。

    基于KPCA获取区分性特征的步骤可以总结为以下几个步骤:

    step1、特征库中随机的选取部分样本集作为初始训练集

    X={x1,x2,...,xn}∈Rn×m

    Step2、选择合适的核函数k(x,xi),计算训练集的核矩阵K

    Step3、根据核矩阵K,计算前k个最大的特征值λk及对应的特征向量v

    λk:{λ1k,λ2k,...,λkk},v:{v1,v2,...,vk}

    Step4、选取k个最大的特征值对应的特征向量v,构造最佳投影矩阵uT

    uT={v1,v2,...,vk}T

    Step5、计算核矩阵在投影矩阵uT上的投影X′=uTK;即所得的投影X′为原始特征中
    降低维度后的易于区分的样本特征。

    训练得到的哈希函数往往需要很强的判别性,即能够同时区分多类样本点特征,
    否则很难确保检索的准确率。因此,本发明在构造哈希投影时,采用改进的k-means聚类算
    法,不是随机的选取某些特征向量作为初始聚类中心,而是通过欧几里得距离度量函数选
    取合适的特征向量作为初始聚类中心,对区分性特征进行聚类量化处理,将不同特征的多
    类样本n分到k个不同的组里面,并选取聚类中心用于学习强判别性的哈希编码函数。为方
    便描述如图3所示,为初次聚类后的特征分布图。

    为避免特征聚类后相似类之间的离散度相差较大,或者是相似样本点属性分布区
    间较大,即原本是相似的样本类,而被分到两个不同的聚类组。如果采用单表索引的结构查
    询,这样势必导致相似的样本点,在哈希检索时被遗漏。因此,本发明对聚类中心进行重组,
    构建多组哈希函数,最后根据多组哈希函数来建立多个哈希索引表,提高相似样本的召回
    率。结合图4进一步说明,假设梅花型是查询图像,其他不同形状的点是与查询图像相似的
    图像。如果仅在梅花聚类哈希表里查询,势必导致其他相似图像被遗漏。如果利用如图3所
    示四个相似类分别构建一组哈希函数,各自生成一张哈希表,那么查询时结合这些表可检
    索到更多的相似样本,以此提高检索召回率。下面为其中一组哈希函数的构建过程,我们在
    特征聚类后对聚类中心进行二次重组,并将相近的类归为到一组相似簇里面,再利用相似
    簇中心与其中相似类聚类中心之间的中垂面作为超几何平面分离相似簇中相邻类的样本
    点集。并将这些中垂面构建一组投影矩阵

    定义:超几何中垂面


    其中Ci,μj表示相似簇和其中一个子集聚类中心,推导相应的哈希函数如下:

    其中

    由上可知,假设哈希编码的长度为L,特征聚类最终得到L个相似簇,并且每个相似
    簇ζ包含λ个相似类,从而我们可以得到λ组哈希函数,每组哈希函数对应一个投影矩阵
    其中表示每个相似簇的中心与其中相似类中心的中垂面。最终
    可以得到λ个投影矩阵并构建λ个哈希函数,最终原始的高维图像特征将被哈希映射为λ个
    索引码,并对应λ个哈希索引表,其中每个索引编码长度为L。

    图5是在公开数据集Caltech-256 1024维CNN特征下与其他六种方法对比,在不同
    的编码位数情况下的平均准确率(Map)示意图。图6是在公开数据集CIFIR-10 512维GIST特
    征下与其他六种方法对比,在不同的编码位数情况下的平均准确率(Map)示意图。

    以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和
    原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的?;し段е?。

    关于本文
    本文标题:一种基于KPCA多表索引图像哈希检索方法.pdf
    链接地址://www.4mum.com.cn/p-6021088.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 11选5任三计划软件 必赢客吉林快三标准版 男子买彩票10年稳赚不赔 幸运飞艇滚七码雪球计划群 时时彩组选包胆走势图 七乐彩30选7走势图表 电子盆栽怎么玩 11选5选五中五10码复式 后三直选复式技巧稳赚方法 大乐透基本带表走势图 河北时时开奖视频直播 必赢客手机版 新时时彩大小单双玩法 十一选五走势图山东 技巧之稳赚不赔方法 重庆市时时彩计划软件下载