• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 19
    • 下载费用:30 金币  

    重庆时时彩违吗: 一种运动目标模拟装置及标定方法.pdf

    关 键 词:
    一种 运动 目标 模拟 装置 标定 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201610765625.6

    申请日:

    2016.08.29

    公开号:

    CN106352898A

    公开日:

    2017.01.25

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G01C 25/00申请日:20160829|||公开
    IPC分类号: G01C25/00 主分类号: G01C25/00
    申请人: 中国科学院西安光学精密机械研究所
    发明人: 田留德; 赵建科; 赵怀学; 王涛; 周艳; 刘艺宁; 万伟; 潘亮; 张海洋; 张婷; 段亚轩; 薛勋; 曹昆; 李坤; 刘尚阔; 张洁; 胡丹丹
    地址: 710119 陕西省西安市高新区新型工业园信息大道17号
    优先权:
    专利代理机构: 西安智邦专利商标代理有限公司 61211 代理人: 杨亚婷
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201610765625.6

    授权公告号:

    |||

    法律状态公告日:

    2017.03.01|||2017.01.25

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明涉及运动目标模拟装置及标定方法,模拟装置包括自准直仪、旋转臂、用于安装自准直仪和旋转臂的轴系、折转反射镜、驱动机构、绝对式角位置传感器、支撑调节架及多功能计算机,轴系包括固定轴及旋转轴,固定轴为中空杆,旋转轴为套在中空杆外侧与中空杆同轴的套筒,固定轴与旋转轴之间通过轴承对连接;自准直仪位于中空杆内位置固定;旋转臂位于自准直仪的出口处且一端与旋转臂固定连接,旋转臂的旋转轴与自准直仪的光轴同轴,旋转臂正对自准直仪的光轴处设置有中心通孔;折转反射镜的反射面面向中心通孔;支撑调节架用于改变旋转轴与水平面的夹角,通过该装置可以在实验室内完成光电探测跟踪系统跟踪性能和测量精度的高精度测试和评价。

    权利要求书

    1.一种运动目标模拟装置,包括自准直仪,其特征在于:还包括旋转臂、用于安装自准
    直仪和旋转臂的轴系、折转反射镜、驱动机构、绝对式角位置传感器、支撑调节架及多功能
    计算机,
    所述轴系包括固定轴及旋转轴,所述固定轴为中空杆,所述旋转轴为套在中空杆外侧
    与中空杆同轴的套筒,所述固定轴与旋转轴之间通过轴承对连接;所述自准直仪位于中空
    杆内位置固定;所述旋转臂位于自准直仪的出口处且一端与旋转臂固定连接,所述旋转臂
    的旋转轴与自准直仪的光轴同轴,所述旋转臂正对自准直仪的光轴处设置有中心通孔;
    所述折转反射镜的反射面面向中心通孔;
    所述驱动机构通过驱动旋转轴从而驱动旋转臂旋转;
    所述绝对式角位置传感器用于测量旋转臂角位置;
    所述支撑调节架用于改变旋转轴与水平面的夹角;
    所述多功能计算机分别与自准直仪、驱动机构及绝对式角位置传感器连接。
    2.根据权利要求1所述的运动目标模拟装置,其特征在于:所述运动目标模拟装置还包
    括目标模拟反射镜及目标模拟反射镜调节装置,所述目标模拟反射镜与折转反射镜位于旋
    转臂同侧,所述目标模拟反射镜的反射面面向折转反射镜的反射面且与旋转臂呈一定夹
    角;
    所述目标模拟反射镜调节装置用于改变目标反射镜与旋转臂的角度。
    3.根据权利要求1或2所述的运动目标模拟装置,其特征在于:所述运动目标模拟装置
    还包括目标模拟反射镜、目标模拟反射镜调节装置、辅助反射镜及标定反射镜,
    所述目标模拟反射镜、折转反射镜及辅助反射镜位于旋转臂同侧,目标模拟反射镜及
    辅助反射镜位于折转反射镜的两侧,
    所述目标模拟反射镜的反射面面向折转反射镜的反射面且与旋转臂呈一定夹角,所述
    目标模拟反射镜调节装置用于改变目标反射镜与旋转臂的角度;
    所述辅助反射镜的反射面背向旋转臂并与旋转臂成一定角度,所述标定反射镜位于自
    准直仪光轴的延长线上,自准直仪的出射光依次经折转反射镜的折转、目标模拟反射镜的
    反射、标定反射镜的反射、辅助反射镜的反射再原路返回构成标定回路。
    4.根据权利要求1或2或3所述的运动目标模拟装置,其特征在于:所述目标模拟反射镜
    是一个具有二维电控调节功能的快速反射镜。
    5.根据权利要求1或2或3所述的运动目标模拟装置,其特征在于:所述运动目标模拟装
    置还包括快速对准器,所述快速对准器包括可见光激光器及夹持连接器,所述可见光激光
    器与自准直仪相对静止,所述可见光激光器的光轴与自准直仪的光轴平行,且出射光能够
    入射到折转反射镜。
    6.根据权利要求1或2或3所述的运动目标模拟装置,其特征在于:所述运动目标模拟装
    置还包括导电滑环,所述多功能计算机通过导电滑环与目标模拟反射镜连接;所述导电滑
    环与轴系同轴,所述导电滑环包括定子和转子,所述定子安装在轴系中空杆的外径上,不随
    轴系转动,所述转子随轴系同步转动,所述绝对式角位置传感器与轴系同轴,所述绝对式角
    位置传感器包括定子和转子,定子安装在轴系中空杆的外径上,不随轴系转动,转子随轴系
    同步转动。
    7.根据权利要求1或2或3所述的运动目标模拟装置,其特征在于:所述旋转臂的中心轴
    与旋转轴重合,所述折转反射镜、目标模拟反射镜及辅助反射镜均安装于旋转臂上,其中目
    标模拟反射镜及辅助反射镜位于旋转臂的两端,所述目标模拟反射镜和辅助反射镜的重量
    和安装位置能够确保旋转臂旋转轴的力和力矩平衡。
    8.对权利要求1所述的模拟装置的模拟目标精度进行标定的方法,其特征在于:包括下
    列步骤:
    1)调整运动目标模拟装置中折转反射镜的角度,使折转反射镜的法线平行于自准直仪
    光轴;
    2)驱动轴系及旋转臂周期性连续旋转,自准直仪发出的平行光束穿过旋转臂的中心通
    孔经折转反射镜反射后又原路返回至自准直仪,多功能计算机实时地读取自准直仪所测量
    的角度误差数据和绝对式角位置传感器的测量值,,多功能计算机对角度误差数据进行做
    傅里叶级数展开得,
    <mrow> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>01</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
    其中
    E1(θ)为自准直仪示值;
    θ为旋转臂的转角位置,即绝对式角位置传感器的示值;
    n为旋转臂旋转一周自准直仪测量点数;
    i=1、2、3......,为展开的各次谐波序号,i=1时,折转反射镜与旋转臂的不平行度误
    差也即是折转反射镜与旋转臂转轴的不垂直度误差;i=2、3......时,表示高精度轴系的
    晃动、变形引起的折转反射镜法线与高帧频自准直仪光轴的不平行度误差;
    为常数项,表示自准直仪光轴与旋转臂转轴的不平行误差;
    去除误差数据中的直流分量和一次谐波分量,余下误差值为运动目标模拟装置高精度
    轴系的动态误差,即为由运动目标模拟装置高精度轴系引入的模拟目标位置误差,
    <mrow> <msubsup> <mi>E</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>01</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mi>cos</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>11</mn> </msub> <mi>sin</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
    9.对权利要求2所述的模拟装置的轴系精度及旋转臂变形进行检测的方法,其特征在
    于,包括以下步骤:
    1)调整运动目标模拟装置中折转反射镜的角度,使该折转反射镜位于旋转臂的中心通
    孔、反射面面向该中心通孔且与旋转臂成45°的位置;
    2)调整运动目标模拟装置中目标模拟反射镜的角度,使目标模拟反射镜垂直于旋转臂
    转轴;3)驱动轴系及旋转臂进行周期性连续旋转,自准直仪发出的平行光束依次穿过旋转
    臂的中心通孔经所述的折转反射镜反射后入射到所述的目标模拟反射镜上,再经该目标模
    拟反射镜反射后原路返回至自准直仪,多功能计算机实时地读取自准直仪所测量的角度误
    差数据和绝对式角位置传感器的测量值,多功能计算机对角度误差数据做傅里叶级数展开
    得,
    <mrow> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>02</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>a</mi> <mn>02</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> <mo>,</mo> </mrow>
    其中,E2(θ)为自准直仪示值;
    i=1、2、3......,为展开的各次谐波序号,i=1时,表示折转反射镜、目标反射镜与旋
    转臂的角度误差;i=2、3......时,表示高精度轴系误差、旋转臂的变形引起模拟目标位置
    误差;
    为常数项,表示高帧频自准直仪光轴与旋转臂转轴的不平行误差;
    θ为旋转臂的转角位置,即绝对式角位置传感器的示值;
    n为旋转臂旋转一周自准直仪测量点数;
    去除误差数据中的直流分量和基频分量,剩下的测试值为运动目标模拟装置高精度轴
    系及旋转臂变形引入的误差,即为由运动目标模拟装置高精度轴系及旋转臂变形引入的模
    拟目标位置误差,
    <mrow> <msubsup> <mi>E</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>02</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>12</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>12</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
    10.对权利要求3所述的模拟装置的轴系精度、旋转臂变形及支撑调节架变形进行检测
    的方法,其特征在于,包括以下步骤:
    1)在运动目标模拟装置的自准直仪的光轴的延长线上设置标定反射镜,
    2)驱动轴系及旋转臂进行周期性连续旋转,自准直仪发出的平行光束依次穿过旋转臂
    的中心通孔经所述的折转反射镜反射后入射到所述的目标模拟反射镜上,再经该目标模拟
    反射镜反射后入射到所述的标定反射镜上,再经标定反射镜反射后入射到所述的辅助反射
    镜上,再经辅助反射镜反射后沿原路返回至自准直仪,多功能计算机实时地读取准直仪所
    测量的角度误差数据和绝对式角位置传感器的测量值,多功能计算机对角度误差数据做傅
    里叶级数展开得:
    <mrow> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>03</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>a</mi> <mn>03</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> <mo>,</mo> </mrow>
    其中,E3(θ)为自准直仪示值;
    i=1、2、3......,为展开的各次谐波序号,i=1时,表示自准直仪光轴与折转反射镜、
    目标反射镜、辅助反射镜及标定反射镜的角度误差;i=2、3......时,表示轴系、旋转臂的
    变形、支撑调节架变形引起模拟目标位置误差;
    θ为旋转臂的转角位置;
    n为旋转臂旋转一周自准直仪测量点数;
    去除误差数据中的直流分量和基频分量,剩下的测试值为动态目标模拟装置模拟目标
    的位置精度,E′3(θ)为运动目标模拟装置高精度轴系晃动、旋转臂变形及支撑调节架变形
    引入的误差,
    <mrow> <msubsup> <mi>E</mi> <mn>3</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>03</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>13</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>13</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>

    说明书

    一种运动目标模拟装置及标定方法

    技术领域

    本发明属于光电检测技术领域,涉及一种运动目标的模拟装置及该装置模拟目标
    位置精度的标定方法。

    背景技术

    光电探测跟踪技术在光学测量、激光雷达、激光通信等领域具有重要应用。光电探
    测跟踪系统是一个集光学、机械、电子学、计算机等学科于一体的复杂系统,在光电探测跟
    踪系统的研制过程中,必须建立相应的性能检测和验证平台,对光电探测跟踪系统及部件
    的参数进行调试,对系统的捕获、跟踪性能、测量精度进行室内测试和验证,以保证产品的
    性能满足技术指标要求。为实现对光电探测跟踪系统跟踪性能和测量精度的检测,需要建
    立高精度的无穷远运动目标模拟装置,以模拟目标的视向运动轨迹、视向运动角速度、视向
    运动角加速度,光电探测跟踪系统对模拟目标进行闭环跟踪与测量,通过对跟踪及测量数
    据分析完成被测光电探测跟踪系统的跟踪性能、测量精度的测试和评价。当前,运动目标模
    拟装置的方案存在以下缺点:(1)目标模拟装置所模拟目标位置精度标定困难,没有有效的
    标定方法,无法对运动目标模拟装置的精度给予精确评价;(2)动态目标模拟装置与被测设
    备之间的位置对准困难,增加了使用难度;(3)动态目标模拟装置的可调参数少,模拟目标
    的运动参数相对单一,模拟目标的角速度和角加速度相关联,无法满足不同设备的测试需
    求;(4)只能够模拟目标的低频运动,无法模拟目标的高频振动,模拟目标的运动特性与目
    标真实特性有偏差,影响测试结果的可信度。如何测量光电探测跟踪系统的跟踪性能、测量
    精度,成为科研工作者面临的难题。目前,还没有查到相关的运动目标模拟的技术方案。

    发明内容

    本发明要解决的技术问题是:提供一种运动目标模拟装置及标定运动目标模拟装
    置模拟目标精度的方法,通过该运动目标模拟装置能够在实验室对光电探测跟踪系统的跟
    踪精度、测量精度进行测试和评价。

    本发明解决技术问题的技术方案是:

    本发明所提供的运动目标模拟装置,包括自准直仪、旋转臂、用于安装自准直仪和
    旋转臂的轴系、折转反射镜、驱动机构、绝对式角位置传感器、支撑调节架及多功能计算机,

    所述轴系包括固定轴及旋转轴,所述固定轴为中空杆,所述旋转轴为套在中空杆
    外侧与中空杆同轴的套筒,所述固定轴与旋转轴之间通过轴承对连接;所述自准直仪位于
    中空杆内位置固定;所述旋转臂位于自准直仪的出口处且一端与旋转臂固定连接,所述旋
    转臂的旋转轴与自准直仪的光轴同轴,所述旋转臂正对自准直仪的光轴处设置有中心通
    孔;

    所述折转反射镜的反射面面向中心通孔;

    所述驱动机构通过驱动旋转轴从而驱动旋转臂旋转;

    所述绝对式角位置传感器用于测量旋转臂角位置;

    所述支撑调节架用于改变旋转轴与水平面的夹角;

    所述多功能计算机分别与自准直仪、驱动机构及绝对式角位置传感器连接。

    以上为本发明的基本结构,该结构可以完成由于轴系晃动所引入的误差的标定,
    标定方法如下:

    1)调整运动目标模拟装置中折转反射镜的角度,使折转反射镜的法线平行于自准
    直仪光轴;

    2)驱动轴系及旋转臂周期性连续旋转,自准直仪发出的平行光束穿过旋转臂的中
    心通孔经折转反射镜反射后又原路返回至自准直仪,多功能计算机实时地读取自准直仪所
    测量的角度误差数据和绝对式角位置传感器的测量值,多功能计算机对角度误差数据进行
    做傅里叶级数展开得,

    <mrow> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>01</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>

    其中

    E1(θ)为自准直仪示值;

    θ为旋转臂的转角位置,即绝对式角位置传感器的示值;

    n为旋转臂旋转一周自准直仪测量点数;

    i=1、2、3……,为展开的各次谐波序号,i=1时,折转反射镜与旋转臂的不平行度
    误差也即是折转反射镜与旋转臂转轴的不垂直度误差;i=2、3……时,表示高精度轴系的
    晃动、变形引起的折转反射镜法线与高帧频自准直仪光轴的不平行度误差;

    为常数项,表示自准直仪光轴与旋转臂转轴的不平行误差;

    去除误差数据中的直流分量和一次谐波分量,余下误差值为运动目标模拟装置高
    精度轴系的动态误差,即为由运动目标模拟装置高精度轴系引入的模拟目标位置误差,

    <mrow> <msubsup> <mi>E</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>01</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>11</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>

    进一步的,为了完成由于轴系晃动及旋转臂变形所引入的误差的标定,本发明的
    运动目标模拟装置还包括目标模拟反射镜及目标模拟反射镜调节装置,所述目标模拟反射
    镜与折转反射镜位于旋转臂同侧,所述目标模拟反射镜的反射面面向折转反射镜的反射面
    且与旋转臂呈一定夹角;所述目标模拟反射镜调节装置用于改变目标反射镜与旋转臂的角
    度。

    对上述的模拟装置的轴系精度及旋转臂变形进行检测的方法,其特殊之处在于,
    包括以下步骤:

    1)调整运动目标模拟装置中折转反射镜的角度,使该折转反射镜位于旋转臂的中
    心通孔、反射面面向该中心通孔且与旋转臂成45°的位置;

    2)调整运动目标模拟装置中目标模拟反射镜的角度,使目标模拟反射镜垂直于旋
    转臂转轴;3)驱动轴系及旋转臂进行周期性连续旋转,自准直仪发出的平行光束依次穿过
    旋转臂的中心通孔经所述的折转反射镜反射后入射到所述的目标模拟反射镜上,再经该目
    标模拟反射镜反射后原路返回至自准直仪,多功能计算机实时地读取自准直仪所测量的角
    度误差数据和绝对式角位置传感器的测量值,多功能计算机对角度误差数据做傅里叶级数
    展开得,

    <mrow> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>02</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>

    <mrow> <msub> <mi>a</mi> <mn>02</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow>

    <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> <mo>,</mo> </mrow>

    <mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> <mo>,</mo> </mrow>

    其中,E2(θ)为自准直仪示值;

    i=1、2、3……,为展开的各次谐波序号,i=1时,表示折转反射镜、目标反射镜与
    旋转臂的角度误差;i=2、3……时,表示高精度轴系误差、旋转臂的变形引起模拟目标位置
    误差;

    为常数项,表示高帧频自准直仪光轴与旋转臂转轴的不平行误差;

    θ为旋转臂的转角位置,即绝对式角位置传感器的示值;

    n为旋转臂旋转一周自准直仪测量点数;

    去除误差数据中的直流分量和基频分量,剩下的测试值为运动目标模拟装置高精
    度轴系及旋转臂变形引入的误差,即为由运动目标模拟装置高精度轴系及旋转臂变形引入
    的模拟目标位置误差。

    <mrow> <msubsup> <mi>E</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>02</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>12</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>12</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>

    再进一步的,为了完成轴系晃动、旋转臂变形及支撑调节架变形所引入的误差的
    标定,本发明的运动目标模拟装置还包括辅助反射镜及标定反射镜,所述辅助反射镜与折
    转反射镜、目标模拟反射镜位于旋转臂同侧,所述辅助反射镜的反射面背向旋转臂并与旋
    转臂成一定角度,所述标定反射镜位于自准直仪光轴的延长线上,自准直仪的出射光依次
    经折转反射镜的折转、目标模拟反射镜的反射、标定反射镜的反射、辅助反射镜的反射再原
    路返回构成标定回路。

    对述的模拟装置的轴系精度、旋转臂变形及支撑调节架变形进行检测的方法,其
    特殊之处在于,包括以下步骤:

    1)在运动目标模拟装置的自准直仪的光轴的延长线上设置标定反射镜,

    2)驱动轴系及旋转臂进行周期性连续旋转,自准直仪发出的平行光束依次穿过旋
    转臂的中心通孔经所述的折转反射镜反射后入射到所述的目标模拟反射镜上,再经该目标
    模拟反射镜反射后入射到所述的标定反射镜上,再经标定反射镜反射后入射到所述的辅助
    反射镜上,再经辅助反射镜反射后沿原路返回至自准直仪,多功能计算机实时地读取自准
    直仪所测量的角度误差数据和绝对式角位置传感器的测量值,多功能计算机对角度误差数
    据做傅里叶级数展开得:

    <mrow> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>03</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>

    <mrow> <msub> <mi>a</mi> <mn>03</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow>

    <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> <mo>,</mo> </mrow>

    <mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> <mo>,</mo> </mrow>

    其中,E3(θ)为自准直仪示值;

    i=1、2、3……,为展开的各次谐波序号,i=1时,表示自准直仪光轴与折转反射
    镜、目标反射镜、辅助反射镜及标定反射镜的角度误差;i=2、3……时,表示轴系、旋转臂的
    变形、支撑调节架变形引起模拟目标位置误差;

    θ为旋转臂的转角位置;

    n为旋转臂旋转一周自准直仪测量点数;

    去除误差数据中的直流分量和基频分量,剩下的测试值为动态目标模拟装置模拟
    目标的位置精度,E3′(θ)为运动目标模拟装置高精度轴系晃动、旋转臂变形及支撑调节架
    变形引入的误差,

    <mrow> <msubsup> <mi>E</mi> <mn>3</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>03</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>13</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>13</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>

    本发明具有以下积极效果:

    1、本发明提供了一种新的运动目标模拟装置,通过该装置可以在实验室内完成光
    电探测跟踪系统跟踪性能和测量精度的高精度测试和评价。该装置具有以下优点:

    (1)该结构的轴系的特点是自准直仪位于中空杆内,在目标模拟装置工作时,自准
    直仪不旋转,这样可以提高目标模拟装置的精度,因为相比与反射镜自准直仪(或和其功能
    相同的装置)通常具有较大的质量,若目标模拟装置工作时自准直仪旋转,则轴系容易产生
    形变,自准直仪也可能发生形变,影响目标模拟装置的精度。其次,本发明的轴系结构便于
    对目标模拟装置的精度进行标定和误差源分离。

    (2)目标模拟器所模拟目标位置精度标定方便,精度高,只需要一块反射镜,不需
    要其他任何辅助设备,基本实现了自标定功能,可用于评价光电探测跟踪系统的测量精度;

    (3)该运动目标模拟装置具有模拟目标视向可视化指示功能,便于运动目标模拟
    装置与被测设备之间的位置对准,降低了使用难度和操作要求,有利于提高工作效率;

    (4)该运动目标模拟装置设置了多个调整环节,如支撑调节架能够改变高帧频自
    准直仪出射光的与水平面的夹角,目标模拟反射镜调节装置能够改变目标反射镜与旋转臂
    的夹角,改变模拟目标视向与高帧频自准直仪光轴的夹角,通过这些调整环节可改变模拟
    目标的视向角范围、视向角速度、视向角加速度,可实现不同角速度、不同角加速度目标的
    模拟,解决现有方案只能满足角速度和角加速度两者之一的问题,可适用于不同工作参数
    设备的测试需求;

    (5)该运动目标模拟装置不仅能够模拟目标的低频运动,还能够模拟目标的高频
    振动。

    2、本发明提供的运动目标模拟装置的精度标定方法,可以分别标定:

    (1)高精度轴系的晃动引起的模拟目标视向角位置误差;

    (2)高精度轴系的晃动及旋转臂变形引起的模拟目标视向角位置综合误差;

    (3)高精度轴系的晃动、旋转臂变形及支撑调节架变形引起的模拟目标视向角位
    置综合误差。

    通过以上三种情况误差的标定,不仅可以完成运动目标模拟装置模拟目标视向角
    位置的精度,完成运动目标模拟装置精度的检定和评价,还可以分离出高精度轴系晃动、旋
    转臂变形、支撑调节架变形等因素引入的模拟目标视向角位置误差,为运动目标模拟装置
    的维修、方案优化和改进提供可靠的数据依据。

    附图说明

    图1利用运动目标模拟装置测试产品跟踪精度布局图;

    图2运动目标模拟装置高精度轴系晃动引入误差标定示意图;

    图3运动目标模拟装置高精度轴系晃动及旋转臂变形引入误差标定示意图;

    图4运动目标模拟装置综合误差标定示意图。

    具体实施方式

    对于车载、机载、球载、舰载、星载光电探测跟踪系统而言,工作平台振动将引起相
    机视轴的抖动,影响光电探测跟踪系统的跟踪性能和测量精度,因此运动目标模拟装置不
    仅应能够模拟目标的低频运动还应能够模拟目标的高频抖动。运动目标模拟装置作为测量
    设备对光电探测跟踪系统的测量精度进行评价时,要求其能够精确给出模拟目标的角位
    置,作为目标位置的真值与被测设备的测量值进行比较从而给出被测设备的测量误差,运
    动目标模拟装置对模拟目标角位置的确定精度应优于被测设备测量精度,因此,运动目标
    模拟装置应具有方便对自身的精度进行检定的特性,即具有可检定性。为了便于使用,提高
    工作效率,运动目标模拟装置应能够对模拟目标视向给出可视化指示,便于与被测设备的
    位置对准。为了在实验室内精确评价光电探测跟踪系统的跟踪性能及测量精度,给出其在
    外场的具体性能,在设计运动目标模拟装置时需要考虑目标运动参数、被测设备工作平台
    的振动、被测设备的工作角度范围、工作角速度、工作角加速度、目标模拟装置自身精度的
    检定、模拟目标视向的可视化指示等因素。

    因此运动目标模拟装置应具有以下功能:(1)模拟无穷远目标;(2)模拟目标的视
    向角、视向运动角速度及视向运动角加速度,评价不同运动参数条件下,光电探测跟踪系统
    的跟踪性能和测量精度;(3)模拟光电探测跟踪系统工作平台的振动,在较真实条件下评价
    被测设备的跟踪性能;(4)合理设计运动目标模拟装置的结构,使其自身精度检定方便快
    捷;(5)对模拟目标的视向进行可视化指示,方便运动目标模拟装置与被测设备的位置对
    准,增强可操作性。

    下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的?;し?br />围。

    先请参阅图1,图1利用运动目标模拟装置测试产品跟踪精度布局图。由图可见,本
    发明运动目标模拟装置,其构成包括高帧频自准直仪1,高精度轴系(包括:轴承对2和中空
    杆18),绝对式角位置传感4,导电滑环3,旋转臂5,辅助反射镜6,可见光激光器7,夹持连接
    器8,折转反射镜9,目标模拟反射镜10,目标模拟反射镜调节装置11,伺服电机13,齿轮14,
    齿轮15,支撑调节架16,多功能计算机17,被测设备19组成。

    高精度轴系是一个中空的轴系,由中空杆和轴承对组成。高帧频自准直仪1在中空
    杆18内部,不随高精度轴系转动。高帧频自准直仪1具有无穷远目标模拟和自准直测量双重
    功能。高帧频自准直仪1的光轴、高精度轴系旋转轴、旋转臂5旋转轴三者共轴。

    绝对式角位置传感器与高精度轴系同轴安装,由定子和转子两部分组成,定子安
    装在高精度轴系中空杆的外径上,不随高精度轴系转动,转子随高精度轴系同步转动,绝对
    式角位置传感器4的功能是实现旋转臂5角位置的高精度测量,也是实现模拟目标角位置高
    精度模拟的前提条件,是给出模拟目标角位置的重要参数。

    导电滑环3分别与多功能计算机和目标模拟反射镜电性连接,实现多功能计算机
    17和目标模拟反射镜11之间功率和信号的传输,又避免导线缠绕。导电滑环与高精度轴系
    同轴安装,由定子和转子两部分组成,定子安装在高精度轴系中空杆的外径上,不随高精度
    轴系转动,转子随高精度轴系同步转动。

    折转反射镜9安装在旋转臂5的相对于所述的高精度轴系另一面上,该折转反射镜
    9位于旋转臂5的中心通孔、反射面面向该中心通孔且与旋转臂成45°的位置。折转反射镜的
    功能为:反射高帧频自准直仪及快速对准器的出射光,反射后光束偏转90°,反射后光束与
    旋转臂平行。

    目标模拟反射镜11是一个具有二维电控调节功能能够实现高频率振动的快速反
    射镜,振动频率达到几百赫兹,控制精度达到角秒量级。目标模拟反射镜11通过目标模拟反
    射镜调节装置10安装在旋转臂的一端、反射面面向所述的折转反射镜9的反射面并与旋转
    臂5成一定角度。所述的辅助反射镜6安装在旋转臂的另一端、反射面背向旋转臂并与旋转
    臂5成一定角度。目标模拟反射镜和辅助反射镜的重量和安装位置可以确保旋转臂旋转轴
    的力和力矩平衡。辅助反射镜的主要功能是辅助构成运动目标模拟装置的标定回路,完成
    运动目标模拟装置的精度标定。

    齿轮传动机构由与伺服电机连接的齿轮14和与旋转臂连接的齿轮15组成,它是伺
    服电机13与旋转臂5之间的传动装置。

    高精度轴系在伺服电机13及齿轮14和齿轮15组成的齿轮组传动机构的驱动下带
    动绝对式角位置传感器4转子、导电滑环3转子、旋转臂5、安装在旋转臂上的辅助反射镜6、
    折转反射镜9、目标模拟反射镜10、目标模拟反射镜调节装置11实现高精度转动,完成模拟
    目标视向的折转。

    用运动目标模拟装置检测光电探测跟踪系统的测角精度时,目标模拟反射镜处于
    特定位置固定不动;用运动目标模拟装置检测光电探测跟踪系统的跟踪性能时,目标模拟
    反射镜进行高频振动,模拟被测设备工作平台的高频振动,使模拟目标的视向既具有低频
    运动特性又具有高频运动特性。

    快速对准器由可见光激光器8及夹持连接器7组成。通过夹持连接器7将可见光激
    光器8固定在高精度轴系中空杆的外径上,且可实现可见光激光器光轴与高精度轴系转轴
    平行,快速对准器与高帧频自准直仪相对静止,不随高精度轴系转动??杉饧す馄?光轴
    与高帧频自准直仪1光轴平行,可见光激光器8的出射激光分别经折转反射镜9、目标模拟反
    射镜11反射后平行于目标光束,从而实现了目标的方向的可视化指示,便于运动目标模拟
    装置与被测设备19的位置对准。

    多功能计算机17与绝对式角位置传感器4、导电滑环3、伺服电机13、高帧频自准直
    仪1电性连接,主要完成对高精度轴系的旋转速度和加速度进行控制,以模拟目标不同的运
    动参数,根据平台振动的功率谱密度或振动参数对目标模拟反射镜11的振动进行控制,以
    模拟被测设备工作平台的高频振动。在对运动目标模拟装置标定时,多功能计算机17接收
    高帧频自准直仪1的读数并完成数据处理,实现运动目标模拟装置自身精度的标定。

    高帧频自准直仪1发出的平行光束依次穿过旋转臂5的中心通孔经所述的折转反
    射镜9反射后入射到所述的目标模拟反射镜11上,再经该目标模拟反射镜11反射形成模拟
    目标光束输出,高精度轴系带动旋转臂5旋转,形成视向以旋转臂5轴为轴的并成锥面分布
    的模拟目标光束分布,实现运动目标的视向轨迹模拟。

    可通过调整目标模拟反射镜调节装置10改变目标反射镜与旋转臂的角度,通过调
    整支撑调节架改变旋转臂的轴线与水平面的夹角,从而改变模拟目标的视向角范围,以适
    应不同被测设备19的测量需要,可以完成被测设备跟踪性能、测量性能的高精度测量。

    对运动目标模拟装置的精度进行标定时,高帧频自准直仪发出的平行光束依次穿
    过旋转臂的中心通孔经所述的折转反射镜反射后入射到所述的目标模拟反射镜上,再经该
    目标模拟反射镜反射后入射到所述的标定反射镜上,再经标定反射镜反射后入射到所述的
    辅助反射镜上,再经辅助反射镜反射后沿原路返回至高帧频自准直仪,多功能计算机对高
    帧频自准直仪示值的进行采集分析,实现运动目标模拟装置精度的标定。

    请参阅图2,图2是运动目标模拟装置高精度轴系晃动引入误差标定示意图。

    调整动态目标模拟装置中折转反射镜9的角度,使折转反射镜位于旋转臂5的中心
    通孔、反射面面向该中心通孔且与旋转臂5成0°的位置,即折转反射镜9的法线平行于高帧
    频自准直仪光轴。

    所述的多功能计算机17驱动伺服电机13转动,通过齿轮14和齿轮15组成的传动机
    构带动高精度轴系2及旋转臂5连续旋转,高帧频自准直仪1发出的平行光束穿过旋转臂5的
    中心通孔经所述的折转反射镜9反射后又原路返回至高帧频自准直仪1,多功能计算机17实
    时地读取高帧频自准直仪1所测量的角度误差数据和绝对式角位置传感器4的测量值,多功
    能计算机17对角度误差数据进行分析处理,旋转臂连续周期性的旋转下,得到的角度误差
    数据也是周期性的,对角度误差数据做傅里叶展开得,

    <mrow> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>01</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow>

    其中,E1(θ)为高帧频自准直仪示值,i=1、2、3……,为展开的各次谐波序号,为
    常数项,θ为旋转臂的转角位置。

    <mrow> <msub> <mi>a</mi> <mn>01</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow>

    <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> </mrow>

    <mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> </mrow>

    n为旋转臂旋转一周高帧频自准直仪测量点数;常数项为高帧频自准直仪光轴
    与旋转臂转轴的不平行误差;i=1时,折转反射镜与旋转臂的不平行度误差,也即是折转反
    射镜与旋转臂转轴的不垂直度误差;i=2、3……时,表示高精度轴系的晃动、变形引起的折
    转反射镜法线与高帧频自准直仪光轴的不平行度误差。

    去除误差数据中的直流分量和一次谐波分量,余下误差值为运动目标模拟装置高
    精度轴系的动态误差。

    <mrow> <msubsup> <mi>E</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>01</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>11</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow>

    E′1(θ)为运动目标模拟装置高精度轴系误差,即为由运动目标模拟装置高精度轴
    系引入的模拟目标位置误差,它是运动目标模拟装置的重要误差源之一。

    请参阅图3,图3是运动目标模拟装置高精度轴系晃动及旋转臂变形引入误差标定
    示意图。

    调整运动目标模拟装置中折转反射镜9的角度,使该折转反射镜位于旋转臂5的中
    心通孔、反射面面向该中心通孔且与旋转臂5成45°的位置;

    调整运动目标模拟装置中目标模拟反射镜调节装置10改变目标模拟反射镜11的
    角度,使目标模拟反射镜11法线与旋转臂5成0°的位置,即目标模拟反射镜11的法线平行于
    旋转臂5转轴,即高帧频自准直仪1发出的平行光束依次穿过旋转臂5的中心通孔经所述的
    折转反射镜9反射后入射到所述的目标模拟反射镜11上,再经该目标模拟反射镜11反射后
    原路返回。

    所述的多功能计算机17驱动伺服电机13转动,通过齿轮14和齿轮15组成的传动机
    构带动高精度轴系及旋转臂5连续旋转,

    高帧频自准直仪1发出的平行光束依次穿过旋转臂5的中心通孔经所述的折转反
    射镜9反射后入射到所述的目标模拟反射镜11上,再经该目标模拟反射镜11反射后原路返
    回至高帧频自准直仪1,多功能计算机17实时地读取高帧频自准直仪1所测量的角度误差数
    据和绝对式角位置传感器4的测量值,多功能计算机17对角度误差数据进行分析处理,旋转
    臂连续周期性的旋转下,得到的角度误差数据也是周期性的,对角度误差数据做傅里叶展
    开得,

    <mrow> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>02</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow>

    其中,E2(θ)为高帧频自准直仪示值,i=1、2、3……,为展开的各次谐波序号,
    为常数项,θ为旋转臂的转角位置。

    <mrow> <msub> <mi>a</mi> <mn>02</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow>

    <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> </mrow>

    <mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> </mrow>

    n为旋转臂5旋转一周高帧频自准直仪1测量点数;常数项为高帧频自准直仪1
    光轴与旋转臂5转轴的不平行误差;i=1时,折转反射镜9、目标反射镜11与旋转臂5的角度
    误差;i=2、3……时,表示高精度轴系误差、旋转臂5的变形引起模拟目标位置误差。

    去除误差数据中的直流分量和基频分量,剩下的测试值为运动目标模拟装置高精
    度轴系、旋转臂5变形引入的误差。

    <mrow> <msubsup> <mi>E</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>02</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>12</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mn>12</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow>

    E′2(θ)为运动目标模拟装置高精度轴系晃动及旋转臂5变形引入的误差,即为由
    运动目标模拟装置高精度轴系晃动及旋转臂5变形引入的模拟目标位置误差。

    请参阅图4,图4是运动目标模拟装置综合误差标定示意图。

    在所述的运动目标模拟装置的高帧频自准直仪1的光轴的延长线上设置标定反射
    镜12,使所述的高帧频自准直仪1发出的平行光束依次穿过旋转臂5的中心通孔经所述的折
    转反射镜9反射后入射到所述的目标模拟反射镜11上,再经该目标模拟反射镜11反射后入
    射到所述的标定反射镜12上,再经标定反射镜12反射后入射到所述的辅助反射镜6上,再经
    辅助反射镜6反射后沿原路返回至高帧频自准直仪1。

    所述的多功能计算机17驱动伺服电机13转动,通过齿轮14和齿轮15组成的传动机
    构带动高精度轴系及旋转臂5连续旋转,高帧频自准直仪1发出的平行光束依次穿过旋转臂
    5的中心通孔经所述的折转反射镜9反射后入射到所述的目标模拟反射镜11上,再经该目标
    模拟反射镜11反射后入射到所述的标定反射镜12上,再经标定反射镜12反射后入射到所述
    的辅助反射镜6上,再经辅助反射镜6反射后沿原路返回至高帧频自准直仪1,多功能计算机
    17实时地读取高帧频自准直仪1所测量的角度误差数据和绝对式角位置传感器4的测量值,
    多功能计算机对角度误差数据进行分析处理,旋转臂连续周期性的旋转下,得到的角度误
    差数据也是周期性的,对角度误差数据做傅里叶展开得,

    <mrow> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>03</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&infin;</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mi>cos</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mi>sin</mi> <mi> </mi> <mi>i</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow>

    其中,E3(θ)为高帧频自准直仪示值,i=1、2、3……,为展开的各次谐波序号,
    为常数项,θ为旋转臂的转角位置。

    <mrow> <msub> <mi>a</mi> <mn>03</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow>

    <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> </mrow>

    <mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi> </mi> <msub> <mi>i&theta;</mi> <mi>j</mi> </msub> </mrow>

    n为旋转臂旋5转一周高帧频自准直仪1测量点数;常数项为高帧频自准直仪1
    光轴与旋转臂5转轴的不平行误差;

    i=1时,高帧频自准直仪1光轴与折转反射镜9、目标模拟反射镜11的位置失调误
    差;i=1时,折转反射镜9、目标反射镜11、辅助反射镜6及标定反射镜12的角度误差;i=2、
    3……时,表示高精度轴系晃动、旋转臂5的变形、支撑调节架16变形引起模拟目标位置误
    差。

    去除误差数据中的直流分量和基频分量,剩下的测试值为运动目标模拟装置模拟
    目标的位置精度。

    <mrow> <msubsup> <mi>E</mi> <mn>3</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>03</mn> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>13</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow>

    E′3(θ)为运动目标模拟装置高精度轴系晃动、旋转臂变形及支撑调节架变形引入
    的误差,即为由运动目标模拟装置模拟目标位置的综合误差。其精度必须是被检测产品精
    度的3倍以上,否则难以保证测试结果的准确性。

    关于本文
    本文标题:一种运动目标模拟装置及标定方法.pdf
    链接地址://www.4mum.com.cn/p-6014170.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 88票极速时时是不是一个骗局 飞艇一期六码免费全天计划 七星彩购买前四位网站 时时计划软件免费版自动出号 彩仙阁计划快彩版登录 大乐透开结果 赌龙虎稳赢法网络棋牌 双色球开奖结果 福彩3d组六6码多少钱 时彩后一稳赚技巧之后一三码抓顺子! 二分pk拾冠军必中计划 大乐透网上不能买了 时时彩二星直选稳赚 11选5免费手机计划软件破解版 重庆时时乐娱网址 3d投注技巧与方法