• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 20
    • 下载费用:30 金币  

    重庆时时彩怎么看组6: 一种混凝土中钢筋腐蚀在线监测系统.pdf

    关 键 词:
    一种 混凝土 钢筋 腐蚀 在线 监测 系统
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201610763059.5

    申请日:

    2016.08.29

    公开号:

    CN106404645A

    公开日:

    2017.02.15

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G01N 17/00申请日:20160829|||公开
    IPC分类号: G01N17/00 主分类号: G01N17/00
    申请人: 孟玲
    发明人: 不公告发明人
    地址: 315200 浙江省宁波市镇海区隧道北路555号
    优先权:
    专利代理机构: 代理人:
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201610763059.5

    授权公告号:

    |||

    法律状态公告日:

    2017.03.15|||2017.02.15

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明提供了一种混凝土中钢筋腐蚀在线监测系统,包括多个设置在混凝土中各监测点上的传感器、信号处理装置、数据转化器和监控计算机,所述数据转换器连接监控计算机的输入端,每个传感器连接一个信号处理装置,信号处理装置的输出端与数据转换器连接;所述传感器包括温度传感器、pH值检测传感器、cl?检测传感器和腐蚀速率检测传感器。本发明能够精确地测量钢筋混凝土结构中钢筋腐蚀速率和钢筋所处腐蚀环境的pH值和cl?,大大简化了电路的结构,当一个检测点出现故障时,也不会造成整个监测系统不能工作。

    权利要求书

    1.一种混凝土中钢筋腐蚀在线监测系统,其特征是,包括多个设置在混凝土中各监测
    点上的传感器、信号处理装置、数据转化器和监控计算机,所述数据转换器连接监控计算机
    的输入端,每个传感器连接一个信号处理装置,信号处理装置的输出端与数据转换器连接;
    所述传感器包括温度传感器、pH值检测传感器、cl-检测传感器和腐蚀速率检测传感器。
    2.根据权利要求1所述的一种混凝土中钢筋腐蚀在线监测系统,其特征是,温度传感
    器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器皆设置于具有防腐、防潮的壳体
    内。
    3.根据权利要求2所述的一种混凝土中钢筋腐蚀在线监测系统,其特征是,所述壳体为
    表面经过防腐处理的铝合金壳体。

    说明书

    一种混凝土中钢筋腐蚀在线监测系统

    技术领域

    本发明涉及混凝土结构?;ぜ际趿煊?,具体涉及一种混凝土中钢筋腐蚀在线监测
    系统。

    背景技术

    相关技术中的混凝土中钢筋腐蚀在线监测系统主要包括设置在建筑物中各监测
    点上的各种检测数据传感器,然后将各个检测数据传感器的数据信号传输到一个采样信号
    处理电路处理后送到计算机分析,以实现混凝土中钢筋的腐蚀速度和耐腐蚀性能的检测
    中,需要同时对pH、cl-及腐蚀参数进行测量,因此需要设置不同传感器,并且各个检测点的
    位置不同,相距也较远,因此,不仅造成了采样信号处理电路和布线结构的复杂化,采样器
    装置的体积较大,而且也会发生因采样信号处理电路故障所造成的整个监测系统不能工作
    的情况。

    发明内容

    为解决上述问题,本发明旨在提供一种混凝土中钢筋腐蚀在线监测系统。

    本发明的目的采用以下技术方案来实现:

    一种混凝土中钢筋腐蚀在线监测系统,包括多个设置在混凝土中各监测点上的传
    感器、信号处理装置、数据转化器和监控计算机,所述数据转换器连接监控计算机的输入
    端,每个传感器连接一个信号处理装置,信号处理装置的输出端与数据转换器连接;所述传
    感器包括温度传感器、pH值检测传感器、cl-检测传感器和腐蚀速率检测传感器。

    本发明的有益效果为:每个检测点上设置与传感器对应连接的信号处理装置,且
    传感器中包括温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器,能够精
    确地测量钢筋混凝土结构中钢筋腐蚀速率和钢筋所处腐蚀环境的pH值和cl-,大大简化了
    电路的结构,当一个检测点出现故障时,也不会造成整个监测系统不能工作,从而解决了上
    述技术问题。

    附图说明

    利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限
    制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得
    其它的附图。

    图1是本发明结构示意图;

    图2是本发明传感器故障诊断装置的示意图。

    附图标记:

    信号采集滤波???、故障特征提取???、在线特征提取???、特征向量优选模
    块4、故障分类识别???、故障种类更新???、健康记录???。

    具体实施方式

    结合以下实施例对本发明作进一步描述。

    应用场景1

    参见图1、图2,本应用场景的一个实施例的混凝土中钢筋腐蚀在线监测系统,包括
    多个设置在混凝土中各监测点上的传感器、信号处理装置、数据转化器和监控计算机,所述
    数据转换器连接监控计算机的输入端,每个传感器连接一个信号处理装置,信号处理装置
    的输出端与数据转换器连接;所述传感器包括温度传感器、pH值检测传感器、cl-检测传感
    器和腐蚀速率检测传感器。

    本发明上述实施例为每个检测点上设置与传感器对应连接的信号处理装置,且传
    感器中包括温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器,能够精确
    地测量钢筋混凝土结构中钢筋腐蚀速率和钢筋所处腐蚀环境的pH值和cl-,大大简化了电
    路的结构,当一个检测点出现故障时,也不会造成整个监测系统不能工作,从而解决了上述
    技术问题。

    优选的,温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器皆设
    置于具有防腐、防潮的壳体内。优选的,所述壳体为表面经过防腐处理的铝合金壳体。

    本优选实施例设置壳体,便于传感器的使用和维护。

    优选的,所述混凝土中钢筋腐蚀在线监测系统还包括对各传感器进行诊断的传感
    器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波???、故障特征提取???、
    在线特征提取???、特征向量优选???、故障分类识别???、故障种类更新???和健康
    记录???。

    本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快
    速搭建,有利于监测各传感器,保证监测系统的监测执行。

    优选的,所述信号采集滤波???用于采集历史传感器信号和在线传感器测试信
    号,并采用组合形态滤波器对信号进行滤波处理;

    本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的
    保留信号的原始特征信息。

    优选的,所述故障特征提取???用于对滤波后的历史传感器信号进行集成经验
    模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:

    (1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;

    (2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传
    感器信号的本征模态函数和余项函数;

    (3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;

    (4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训
    练特征向量;

    所述在线特征提取???用于对滤波后的在线传感器测试信号进行集成经验模态
    分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:

    (1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的
    本征模态函数和余项函数;

    (2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;

    (3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作
    为待测特征向量。

    本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效
    的消除模态混叠现象,分解的效果较好。

    优选的,所述特征向量优选???分别对训练特征向量和待测特征向量进行相似
    性度量,对于相似度高的特征向量进行剔除,包括:

    (1)定义两向量相似度函数S(X,Y):


    式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、
    Y标准差;

    对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似
    度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);

    (2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征
    向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。

    本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。

    优选的,所述故障分类识别???用于采用优化的最小二乘支持向量机对所述待
    测特征向量进行故障分类识别,包括参数选择优化子???、训练子??楹褪侗鹱幽??,具体
    为:

    所述参数选择优化子??橛糜诠乖熳钚《酥С窒蛄炕暮撕?,并对最小二乘
    支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;

    所述训练子???,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方
    法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训
    练,并构建传感器故障诊断模型;

    所述识别子??橛糜诓捎盟龃衅鞴收险锒夏P投运龃馓卣飨蛄拷泄?br />障分类识别;

    其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函
    数构造为:

    K=(1-δ)(xxi+1)p+δexp(-‖x-xi‖2/σ2)

    式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶
    数,σ2为RBF核函数参数。

    其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:

    (1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始
    位置和初始速度,定义适应度函数为:


    式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自
    设定的权重系数,qi的取值范围设定为[0.4,0.5];

    (2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别
    更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的
    最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;

    (3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速
    度,生成最优粒子序列;

    (4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,
    直至达到最大迭代次数或者满足适应度函数的误差要求。

    其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:

    (1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;

    (2)输出最小分离性测度对应的j、

    (3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支
    持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出
    判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;

    (4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;

    (5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训
    练样本进行分类效果测试。

    本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性
    较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间
    分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是
    局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而
    全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行
    最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;
    设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部
    寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子
    群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。

    优选地,所述故障种类更新???用于对训练集进行更新,不断优化传感器故障诊
    断模型,包括:

    (1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征
    向量作为新的训练特征向量;

    (2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持
    向量机进行训练,并构建出新的传感器故障诊断模型;

    (3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成
    故障种类更新。

    本优选实施例设置故障种类更新???,以提高模型的适应能力和应用范围。

    优选的,所述健康记录???包括存储子??楹桶踩梦首幽??,所述存储子???br />采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,
    所述安全访问子??橛糜诙孕畔⒔蟹梦?,具体地,对应于存储子???,将数据下载到本
    地,采用相应密钥进行解锁后,再进行解压以读取信息。

    本优选实施例设置健康记录???,一方面保证了信息安全,另一方面能够随时对
    故障进行访问,便于查找问题。

    在此应用场景中,设定阈值T1的取值为0.96,传感器故障诊断装置的监测速度相
    对提高了10%,传感器故障诊断装置的监测精度相对提高了12%。

    应用场景2

    参见图1、图2,本应用场景的一个实施例的混凝土中钢筋腐蚀在线监测系统,包括
    多个设置在混凝土中各监测点上的传感器、信号处理装置、数据转化器和监控计算机,所述
    数据转换器连接监控计算机的输入端,每个传感器连接一个信号处理装置,信号处理装置
    的输出端与数据转换器连接;所述传感器包括温度传感器、pH值检测传感器、cl-检测传感
    器和腐蚀速率检测传感器。

    本发明上述实施例为每个检测点上设置与传感器对应连接的信号处理装置,且传
    感器中包括温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器,能够精确
    地测量钢筋混凝土结构中钢筋腐蚀速率和钢筋所处腐蚀环境的pH值和cl-,大大简化了电
    路的结构,当一个检测点出现故障时,也不会造成整个监测系统不能工作,从而解决了上述
    技术问题。

    优选的,温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器皆设
    置于具有防腐、防潮的壳体内。优选的,所述壳体为表面经过防腐处理的铝合金壳体。

    本优选实施例设置壳体,便于传感器的使用和维护。

    优选的,所述混凝土中钢筋腐蚀在线监测系统还包括对各传感器进行诊断的传感
    器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波???、故障特征提取???、
    在线特征提取???、特征向量优选???、故障分类识别???、故障种类更新???和健康
    记录???。

    本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快
    速搭建,有利于监测各传感器,保证监测系统的监测执行。

    优选的,所述信号采集滤波???用于采集历史传感器信号和在线传感器测试信
    号,并采用组合形态滤波器对信号进行滤波处理;

    本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的
    保留信号的原始特征信息。

    优选的,所述故障特征提取???用于对滤波后的历史传感器信号进行集成经验
    模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:

    (1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;

    (2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传
    感器信号的本征模态函数和余项函数;

    (3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;

    (4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训
    练特征向量;

    所述在线特征提取???用于对滤波后的在线传感器测试信号进行集成经验模态
    分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:

    (1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的
    本征模态函数和余项函数;

    (2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;

    (3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作
    为待测特征向量。

    本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效
    的消除模态混叠现象,分解的效果较好。

    优选的,所述特征向量优选???分别对训练特征向量和待测特征向量进行相似
    性度量,对于相似度高的特征向量进行剔除,包括:

    (1)定义两向量相似度函数S(X,Y):


    式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、
    Y标准差;

    对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似
    度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);

    (2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征
    向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。

    本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。

    优选的,所述故障分类识别???用于采用优化的最小二乘支持向量机对所述待
    测特征向量进行故障分类识别,包括参数选择优化子???、训练子??楹褪侗鹱幽??,具体
    为:

    所述参数选择优化子??橛糜诠乖熳钚《酥С窒蛄炕暮撕?,并对最小二乘
    支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;

    所述训练子???,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方
    法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训
    练,并构建传感器故障诊断模型;

    所述识别子??橛糜诓捎盟龃衅鞴收险锒夏P投运龃馓卣飨蛄拷泄?br />障分类识别;

    其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函
    数构造为:

    K=(1-δ)(xxi+1)p+δexp(-‖x-xi‖2/σ2)

    式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶
    数,σ2为RBF核函数参数。

    其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:

    (1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始
    位置和初始速度,定义适应度函数为:


    式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自
    设定的权重系数,qi的取值范围设定为[0.4,0.5];

    (2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别
    更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的
    最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;

    (3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速
    度,生成最优粒子序列;

    (4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,
    直至达到最大迭代次数或者满足适应度函数的误差要求。

    其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:

    (1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;

    (2)输出最小分离性测度对应的j、

    (3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支
    持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出
    判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;

    (4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;

    (5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训
    练样本进行分类效果测试。

    本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性
    较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间
    分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是
    局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而
    全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行
    最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;
    设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部
    寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子
    群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。

    优选地,所述故障种类更新???用于对训练集进行更新,不断优化传感器故障诊
    断模型,包括:

    (1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征
    向量作为新的训练特征向量;

    (2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持
    向量机进行训练,并构建出新的传感器故障诊断模型;

    (3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成
    故障种类更新。

    本优选实施例设置故障种类更新???,以提高模型的适应能力和应用范围。

    优选的,所述健康记录???包括存储子??楹桶踩梦首幽??,所述存储子???br />采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,
    所述安全访问子??橛糜诙孕畔⒔蟹梦?,具体地,对应于存储子???,将数据下载到本
    地,采用相应密钥进行解锁后,再进行解压以读取信息。

    本优选实施例设置健康记录???,一方面保证了信息安全,另一方面能够随时对
    故障进行访问,便于查找问题。

    在此应用场景中,设定阈值T1的取值为0.95,传感器故障诊断装置的监测速度相
    对提高了11%,传感器故障诊断装置的监测精度相对提高了11%。

    应用场景3

    参见图1、图2,本应用场景的一个实施例的混凝土中钢筋腐蚀在线监测系统,包括
    多个设置在混凝土中各监测点上的传感器、信号处理装置、数据转化器和监控计算机,所述
    数据转换器连接监控计算机的输入端,每个传感器连接一个信号处理装置,信号处理装置
    的输出端与数据转换器连接;所述传感器包括温度传感器、pH值检测传感器、cl-检测传感
    器和腐蚀速率检测传感器。

    本发明上述实施例为每个检测点上设置与传感器对应连接的信号处理装置,且传
    感器中包括温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器,能够精确
    地测量钢筋混凝土结构中钢筋腐蚀速率和钢筋所处腐蚀环境的pH值和cl-,大大简化了电
    路的结构,当一个检测点出现故障时,也不会造成整个监测系统不能工作,从而解决了上述
    技术问题。

    优选的,温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器皆设
    置于具有防腐、防潮的壳体内。优选的,所述壳体为表面经过防腐处理的铝合金壳体。

    本优选实施例设置壳体,便于传感器的使用和维护。

    优选的,所述混凝土中钢筋腐蚀在线监测系统还包括对各传感器进行诊断的传感
    器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波???、故障特征提取???、
    在线特征提取???、特征向量优选???、故障分类识别???、故障种类更新???和健康
    记录???。

    本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快
    速搭建,有利于监测各传感器,保证监测系统的监测执行。

    优选的,所述信号采集滤波???用于采集历史传感器信号和在线传感器测试信
    号,并采用组合形态滤波器对信号进行滤波处理;

    本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的
    保留信号的原始特征信息。

    优选的,所述故障特征提取???用于对滤波后的历史传感器信号进行集成经验
    模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:

    (1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;

    (2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传
    感器信号的本征模态函数和余项函数;

    (3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;

    (4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训
    练特征向量;

    所述在线特征提取???用于对滤波后的在线传感器测试信号进行集成经验模态
    分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:

    (1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的
    本征模态函数和余项函数;

    (2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;

    (3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作
    为待测特征向量。

    本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效
    的消除模态混叠现象,分解的效果较好。

    优选的,所述特征向量优选???分别对训练特征向量和待测特征向量进行相似
    性度量,对于相似度高的特征向量进行剔除,包括:

    (1)定义两向量相似度函数S(X,Y):


    式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、
    Y标准差;

    对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似
    度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);

    (2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征
    向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。

    本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。

    优选的,所述故障分类识别???用于采用优化的最小二乘支持向量机对所述待
    测特征向量进行故障分类识别,包括参数选择优化子???、训练子??楹褪侗鹱幽??,具体
    为:

    所述参数选择优化子??橛糜诠乖熳钚《酥С窒蛄炕暮撕?,并对最小二乘
    支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;

    所述训练子???,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方
    法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训
    练,并构建传感器故障诊断模型;

    所述识别子??橛糜诓捎盟龃衅鞴收险锒夏P投运龃馓卣飨蛄拷泄?br />障分类识别;

    其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函
    数构造为:

    K=(1-δ)(xxi+1)p+δexp(-‖x-xi‖2/σ2)

    式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶
    数,σ2为RBF核函数参数。

    其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:

    (1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始
    位置和初始速度,定义适应度函数为:


    式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自
    设定的权重系数,qi的取值范围设定为[0.4,0.5];

    (2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别
    更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的
    最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;

    (3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速
    度,生成最优粒子序列;

    (4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,
    直至达到最大迭代次数或者满足适应度函数的误差要求。

    其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:

    (1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;

    (2)输出最小分离性测度对应的j、

    (3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支
    持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出
    判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;

    (4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;

    (5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训
    练样本进行分类效果测试。

    本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性
    较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间
    分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是
    局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而
    全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行
    最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;
    设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部
    寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子
    群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。

    优选地,所述故障种类更新???用于对训练集进行更新,不断优化传感器故障诊
    断模型,包括:

    (1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征
    向量作为新的训练特征向量;

    (2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持
    向量机进行训练,并构建出新的传感器故障诊断模型;

    (3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成
    故障种类更新。

    本优选实施例设置故障种类更新???,以提高模型的适应能力和应用范围。

    优选的,所述健康记录???包括存储子??楹桶踩梦首幽??,所述存储子???br />采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,
    所述安全访问子??橛糜诙孕畔⒔蟹梦?,具体地,对应于存储子???,将数据下载到本
    地,采用相应密钥进行解锁后,再进行解压以读取信息。

    本优选实施例设置健康记录???,一方面保证了信息安全,另一方面能够随时对
    故障进行访问,便于查找问题。

    在此应用场景中,设定阈值T1的取值为0.94,传感器故障诊断装置的监测速度相
    对提高了12%,传感器故障诊断装置的监测精度相对提高了10%。

    应用场景4

    参见图1、图2,本应用场景的一个实施例的混凝土中钢筋腐蚀在线监测系统,包括
    多个设置在混凝土中各监测点上的传感器、信号处理装置、数据转化器和监控计算机,所述
    数据转换器连接监控计算机的输入端,每个传感器连接一个信号处理装置,信号处理装置
    的输出端与数据转换器连接;所述传感器包括温度传感器、pH值检测传感器、cl-检测传感
    器和腐蚀速率检测传感器。

    本发明上述实施例为每个检测点上设置与传感器对应连接的信号处理装置,且传
    感器中包括温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器,能够精确
    地测量钢筋混凝土结构中钢筋腐蚀速率和钢筋所处腐蚀环境的pH值和cl-,大大简化了电
    路的结构,当一个检测点出现故障时,也不会造成整个监测系统不能工作,从而解决了上述
    技术问题。

    优选的,温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器皆设
    置于具有防腐、防潮的壳体内。优选的,所述壳体为表面经过防腐处理的铝合金壳体。

    本优选实施例设置壳体,便于传感器的使用和维护。

    优选的,所述混凝土中钢筋腐蚀在线监测系统还包括对各传感器进行诊断的传感
    器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波???、故障特征提取???、
    在线特征提取???、特征向量优选???、故障分类识别???、故障种类更新???和健康
    记录???。

    本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快
    速搭建,有利于监测各传感器,保证监测系统的监测执行。

    优选的,所述信号采集滤波???用于采集历史传感器信号和在线传感器测试信
    号,并采用组合形态滤波器对信号进行滤波处理;

    本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的
    保留信号的原始特征信息。

    优选的,所述故障特征提取???用于对滤波后的历史传感器信号进行集成经验
    模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:

    (1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;

    (2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传
    感器信号的本征模态函数和余项函数;

    (3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;

    (4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训
    练特征向量;

    所述在线特征提取???用于对滤波后的在线传感器测试信号进行集成经验模态
    分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:

    (1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的
    本征模态函数和余项函数;

    (2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;

    (3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作
    为待测特征向量。

    本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效
    的消除模态混叠现象,分解的效果较好。

    优选的,所述特征向量优选???分别对训练特征向量和待测特征向量进行相似
    性度量,对于相似度高的特征向量进行剔除,包括:

    (1)定义两向量相似度函数S(X,Y):


    式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、
    Y标准差;

    对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似
    度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);

    (2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征
    向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。

    本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。

    优选的,所述故障分类识别???用于采用优化的最小二乘支持向量机对所述待
    测特征向量进行故障分类识别,包括参数选择优化子???、训练子??楹褪侗鹱幽??,具体
    为:

    所述参数选择优化子??橛糜诠乖熳钚《酥С窒蛄炕暮撕?,并对最小二乘
    支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;

    所述训练子???,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方
    法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训
    练,并构建传感器故障诊断模型;

    所述识别子??橛糜诓捎盟龃衅鞴收险锒夏P投运龃馓卣飨蛄拷泄?br />障分类识别;

    其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函
    数构造为:

    K=(1-δ)(xxi+1)p+δexp(-‖x-xi‖2/σ2)

    式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶
    数,σ2为RBF核函数参数。

    其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:

    (1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始
    位置和初始速度,定义适应度函数为:


    式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自
    设定的权重系数,qi的取值范围设定为[0.4,0.5];

    (2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别
    更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的
    最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;

    (3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速
    度,生成最优粒子序列;

    (4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,
    直至达到最大迭代次数或者满足适应度函数的误差要求。

    其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:

    (1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;

    (2)输出最小分离性测度对应的j、

    (3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支
    持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出
    判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;

    (4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;

    (5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训
    练样本进行分类效果测试。

    本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性
    较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间
    分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是
    局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而
    全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行
    最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;
    设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部
    寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子
    群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。

    优选地,所述故障种类更新???用于对训练集进行更新,不断优化传感器故障诊
    断模型,包括:

    (1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征
    向量作为新的训练特征向量;

    (2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持
    向量机进行训练,并构建出新的传感器故障诊断模型;

    (3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成
    故障种类更新。

    本优选实施例设置故障种类更新???,以提高模型的适应能力和应用范围。

    优选的,所述健康记录???包括存储子??楹桶踩梦首幽??,所述存储子???br />采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,
    所述安全访问子??橛糜诙孕畔⒔蟹梦?,具体地,对应于存储子???,将数据下载到本
    地,采用相应密钥进行解锁后,再进行解压以读取信息。

    本优选实施例设置健康记录???,一方面保证了信息安全,另一方面能够随时对
    故障进行访问,便于查找问题。在此应用场景中,设定阈值T1的取值为0.93,传感器故障诊
    断装置的监测速度相对提高了13%,传感器故障诊断装置的监测精度相对提高了9%。

    应用场景5

    参见图1、图2,本应用场景的一个实施例的混凝土中钢筋腐蚀在线监测系统,包括
    多个设置在混凝土中各监测点上的传感器、信号处理装置、数据转化器和监控计算机,所述
    数据转换器连接监控计算机的输入端,每个传感器连接一个信号处理装置,信号处理装置
    的输出端与数据转换器连接;所述传感器包括温度传感器、pH值检测传感器、cl-检测传感
    器和腐蚀速率检测传感器。

    本发明上述实施例为每个检测点上设置与传感器对应连接的信号处理装置,且传
    感器中包括温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器,能够精确
    地测量钢筋混凝土结构中钢筋腐蚀速率和钢筋所处腐蚀环境的pH值和cl-,大大简化了电
    路的结构,当一个检测点出现故障时,也不会造成整个监测系统不能工作,从而解决了上述
    技术问题。

    优选的,温度传感器、pH值检测传感器、cl-检测传感器、腐蚀速率检测传感器皆设
    置于具有防腐、防潮的壳体内。优选的,所述壳体为表面经过防腐处理的铝合金壳体。

    本优选实施例设置壳体,便于传感器的使用和维护。

    优选的,所述混凝土中钢筋腐蚀在线监测系统还包括对各传感器进行诊断的传感
    器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波???、故障特征提取???、
    在线特征提取???、特征向量优选???、故障分类识别???、故障种类更新???和健康
    记录???。

    本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快
    速搭建,有利于监测各传感器,保证监测系统的监测执行。

    优选的,所述信号采集滤波???用于采集历史传感器信号和在线传感器测试信
    号,并采用组合形态滤波器对信号进行滤波处理;

    本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的
    保留信号的原始特征信息。

    优选的,所述故障特征提取???用于对滤波后的历史传感器信号进行集成经验
    模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:

    (1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;

    (2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传
    感器信号的本征模态函数和余项函数;

    (3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;

    (4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训
    练特征向量;

    所述在线特征提取???用于对滤波后的在线传感器测试信号进行集成经验模态
    分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:

    (1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的
    本征模态函数和余项函数;

    (2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;

    (3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作
    为待测特征向量。

    本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效
    的消除模态混叠现象,分解的效果较好。

    优选的,所述特征向量优选???分别对训练特征向量和待测特征向量进行相似
    性度量,对于相似度高的特征向量进行剔除,包括:

    (1)定义两向量相似度函数S(X,Y):


    式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、
    Y标准差;

    对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似
    度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);

    (2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征
    向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。

    本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。

    优选的,所述故障分类识别???用于采用优化的最小二乘支持向量机对所述待
    测特征向量进行故障分类识别,包括参数选择优化子???、训练子??楹褪侗鹱幽??,具体
    为:

    所述参数选择优化子??橛糜诠乖熳钚《酥С窒蛄炕暮撕?,并对最小二乘
    支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;

    所述训练子???,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方
    法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训
    练,并构建传感器故障诊断模型;

    所述识别子??橛糜诓捎盟龃衅鞴收险锒夏P投运龃馓卣飨蛄拷泄?br />障分类识别;

    其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函
    数构造为:

    K=(1-δ)(xxi+1)p+δexp(-‖x-xi‖2/σ2)

    式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶
    数,σ2为RBF核函数参数。

    其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:

    (1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始
    位置和初始速度,定义适应度函数为:


    式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自
    设定的权重系数,qi的取值范围设定为[0.4,0.5];

    (2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别
    更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的
    最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;

    (3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速
    度,生成最优粒子序列;

    (4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,
    直至达到最大迭代次数或者满足适应度函数的误差要求。

    其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:

    (1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;

    (2)输出最小分离性测度对应的j、

    (3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支
    持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出
    判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;

    (4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;

    (5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训
    练样本进行分类效果测试。

    本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性
    较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间
    分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是
    局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而
    全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行
    最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;
    设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部
    寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子
    群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。

    优选地,所述故障种类更新???用于对训练集进行更新,不断优化传感器故障诊
    断模型,包括:

    (1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征
    向量作为新的训练特征向量;

    (2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持
    向量机进行训练,并构建出新的传感器故障诊断模型;

    (3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成
    故障种类更新。

    本优选实施例设置故障种类更新???,以提高模型的适应能力和应用范围。

    优选的,所述健康记录???包括存储子??楹桶踩梦首幽??,所述存储子???br />采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,
    所述安全访问子??橛糜诙孕畔⒔蟹梦?,具体地,对应于存储子???,将数据下载到本
    地,采用相应密钥进行解锁后,再进行解压以读取信息。

    本优选实施例设置健康记录???,一方面保证了信息安全,另一方面能够随时对
    故障进行访问,便于查找问题。

    在此应用场景中,设定阈值T1的取值为0.92,传感器故障诊断装置的监测速度相
    对提高了14%,传感器故障诊断装置的监测精度相对提高了8%。

    最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保
    护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应
    当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实
    质和范围。

    关于本文
    本文标题:一种混凝土中钢筋腐蚀在线监测系统.pdf
    链接地址://www.4mum.com.cn/p-6013949.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 快3彩票计划软件下载 赌博中限红是什么意思 云南时时2017年数据 三期必開一期永久 北京pk拾赛车软件 倍投模式148 极速pk10是真是假 湖北快三计划软件 云南时时票开奖号码 福建时时开奖时间 北京pk10一期五码计划 冠亚和值计划软件下载 内蒙古时时开结果查询 前三组选包胆啥意思 电子桌牌 时时彩后三技巧稳赚法