• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 12
    • 下载费用:30 金币  

    20181025011重庆时时彩: 一种基于支持向量描述和K近质心近邻的变压器故障诊断方法.pdf

    关 键 词:
    一种 基于 支持 向量 描述 质心 近邻 变压器 故障诊断 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201611119910.7

    申请日:

    2016.12.08

    公开号:

    CN106770939A

    公开日:

    2017.05.31

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G01N 33/00申请日:20161208|||公开
    IPC分类号: G01N33/00; G01R31/00 主分类号: G01N33/00
    申请人: 贵州电网有限责任公司电力科学研究院
    发明人: 刘君; 赵立进; 黄良; 曾华荣; 张迅; 彭辉; 陈欢; 魏岸; 张开轩; 王家华
    地址: 550002 贵州省贵阳市解放路251号
    优先权:
    专利代理机构: 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 代理人: 鲁力
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611119910.7

    授权公告号:

    |||

    法律状态公告日:

    2017.06.23|||2017.05.31

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明涉及一种基于支持向量描述和K近质心近邻的变压器故障诊断方法。本发明通过变压器油中溶解气体分析技术获取变压器油中溶解特征气体H2、CH4、C2H6、C2H4、C2H2的含量数据,并对数据预处理和归一化,构成变压器故障诊断样本集,然后基于单分类支持向量描述方法建立多分类超球体模型,对变压器进行故障诊断,并利用K近质心近邻分类算法对支持向量描述多分类过程中混叠域样本进一步分类,从而提高变压器的故障诊断准确率。本发明将多分类支持向量描述方法和K近质心近邻分类方法结合起来,能实现小样本、不平衡样本集等的准确分类,可以显著提高变压器的故障诊断精度,为变压器的状态检修决策的制定提供有力的支持。

    权利要求书

    1.一种基于支持向量描述和K近质心近邻的变压器故障诊断方法,其特征在于,包括以
    下步骤:
    步骤1:通过变压器油中溶解气体分析技术(DGA)实时采集变压器运行过程中油中溶解
    气体含量,并对获取到的数据进行预处理,构成故障诊断正常样本集和各类故障样本集;采
    集油中溶解气体含量主要包括H2、CH4、C2H6、C2H4、C2H2气体的含量;
    所述数据预处理主要包括:
    步骤1.1、数据整理:整理故障诊断样本集,剔除一些冗余、异常、无效的数据;
    步骤1.2、数据归一化:将初始数据集中的各特征气体的含量值按其取值范围全部归一
    化到[0,1]区间,在归一化时,为了同时保留油中溶解特征气体的相对含量信息和绝对含量
    信息,采用如下方法进行归一化:
    样本原始数据表示为X={x1,x2,x3,x4,x5},其中x1,x2,x3,x4,x5分别为油中H2、CH4、
    C2H6、C2H4、C2H2气体的含量;

    <mrow> <msup> <mi>X</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mo>{</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>/</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>/</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> <mo>/</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>,</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> <msub> <mi>log</mi> <mn>10</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>}</mo> </mrow>
    步骤2:使用支持向量描述方法分别对正常样本集和各类故障样本集进行训练,得到正
    常类和各故障类的超球体诊断模型;各类超求体故障诊断模型的建立过程如下:
    对于数据集xim,尽可能多的包含数据集样本的最小超球体(am,Rm)的求解定义如下:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>min</mi> </mtd> <mtd> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>R</mi> <mi>m</mi> </msup> <mo>,</mo> <msup> <mi>a</mi> <mi>m</mi> </msup> <mo>,</mo> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mi>m</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>R</mi> <mi>m</mi> </msup> <mo>+</mo> <msup> <mi>C</mi> <mi>m</mi> </msup> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mi>m</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>-</mo> <msup> <mi>a</mi> <mi>m</mi> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>-</mo> <msup> <mi>a</mi> <mi>m</mi> </msup> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&le;</mo> <msup> <mi>R</mi> <mi>m</mi> </msup> <mo>+</mo> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mi>m</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>,</mo> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>n</mi> <mi>m</mi> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
    其中,am是第m类样本集训练得到的超球体的球心,Rm是第m个超球体的半径,Cm是惩罚
    常量,是松弛变量;
    分别对a和R求偏微分,并引入高斯高斯径向基核函数后,原二次规划问题可以转化为
    如下:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </mtd> <mtd> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msup> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mi>K</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>,</mo> <msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&Sigma;</mo> <mi>j</mi> </munder> <msup> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <msup> <msub> <mi>a</mi> <mi>j</mi> </msub> <mi>m</mi> </msup> <mi>K</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>,</mo> <msup> <msub> <mi>x</mi> <mi>j</mi> </msub> <mi>m</mi> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msup> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>&le;</mo> <msup> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>&le;</mo> <msup> <mi>C</mi> <mi>m</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
    求解该极值问题,即可求出计算出超球体的球心am、半径Rm;
    对于第m类超球体,其球心am、半径Rm的计算公式如下:
    am=∑αimxim
    <mrow> <msup> <mi>R</mi> <msub> <mi>m</mi> <mn>2</mn> </msub> </msup> <mo>=</mo> <mi>K</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>x</mi> <mi>p</mi> </msub> <mi>m</mi> </msup> <mo>,</mo> <msup> <msub> <mi>x</mi> <mi>p</mi> </msub> <mi>m</mi> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>&Sigma;</mi> <msup> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mi>K</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>x</mi> <mi>p</mi> </msub> <mi>m</mi> </msup> <mo>,</mo> <msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mi>&Sigma;</mi> <msup> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <msup> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mi>m</mi> </msup> <mi>K</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>,</mo> <msup> <msub> <mi>x</mi> <mi>j</mi> </msub> <mi>m</mi> </msup> <mo>)</mo> </mrow> </mrow>
    求解该极值问题,即可求出计算出超球体的球心am,半径Rm;
    步骤3:对待检测样本进行故障诊断:根据待检测样本与超球体诊断模型之间的判别准
    则,判断待检测样本是否满足各超球体诊断模型,判断准则如下:计算待检测样本z到各超
    球体球心的距离f(z)
    <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mi>K</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <msup> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mi>m</mi> </msup> <mi>K</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>m</mi> </msup> <mo>,</mo> <msup> <msub> <mi>x</mi> <mi>j</mi> </msub> <mi>m</mi> </msup> <mo>)</mo> </mrow> </mrow>
    如果f(z)≤R2,则待检测样本z满足该类超球体模型;否则,待检测样本z不满足该类超
    球体模型;
    并根据判断结果选择执行以下步骤:
    选择步骤1:若有多个超球体诊断模型满足,则执行步骤4;
    选择步骤2:若无超球体诊断模型满足,则执行步骤5;否则输出诊断结果,
    步骤4:采用K近质心近邻算法对属于多超球体混叠域的待检测样本进行精确分类,输
    出诊断结果,包括以下步骤:
    步骤4.1:依次取出其中两个超球体Si和Sj,分别提取出超球体Si和Sj的训练样本集Xi
    和Xj中处于混叠域的样本,得到i类的混叠样本集Ximix和Xjmix,样本数分别记为Ni和Nj;
    步骤4.2:对待检测样本z,分别在Ximix和Xjmix中搜索min(Ni,Nj)个K近质心近邻样本
    集A、B;
    步骤4.3:分别计算i类K近质心近邻样本的均值点和j类K近质心近邻样本的均值点,根
    据待检测样本到两均值点距离的大小判断待检测样本z类别;
    步骤5:采用K近质心近邻算法对处于所有超球体外部的待检测样本进行分类,输出诊
    断结果,包括以下步骤:
    步骤5.1:分别在每一类超球体模型的训练样本中搜索待检测样本z的K个近质心近邻
    样本;
    步骤5.2:计算每一类K个近质心近邻样本的均值点,根据待检测样本z到各均值点的距
    离判断z的类别。

    说明书

    一种基于支持向量描述和K近质心近邻的变压器故障诊断方法

    技术领域

    本发明属于变压器故障在线监测技术领域,具体涉及一种基于支持向量描述和K
    近质心近邻的变压器故障诊断方法。

    背景技术

    随着社会的发展,电力日益成为国民经济和人民生活的重要组成部分,不管是工
    农业生产还是人们日常生活,都需要一份稳定、可靠的电力供应。电力变压器在电网中主要
    负责电能的变换、分配和传输,作为电力系统枢纽设备之一,它的运行状态直接决定着电力
    系统能否安全、稳定、可靠地供电。电力变压器内部结构复杂,运行环境恶劣,其在运行中不
    仅要承受不均匀电场、机械应力,还要承受热、潮湿等环境应力,导致其极易发生故障。且随
    着电网的不断发展和电力技术不断提高,电网逐渐向大电网发展,电网电压逐渐增高、容量
    逐渐增大,变压器的故障率也随之呈现了上升的趋势。由于电网覆盖面广、用户数量多,一
    旦变压器发生故障,不仅会酿成重大的安全隐患,还可能会造成巨大的经济损失。针对电力
    变压器高故障率以及其故障时可能导致巨大危害的特点,快速、准确地对变压器进行诊断,
    及时掌握其运行状态,在确保电力系统安全、可靠、稳定地运行中有着重要意义。

    电力变压器油中溶解气体的组分和含量可以很大程度的反映出变压器的运行状
    态,且在分析的过程中不受外界电场和磁场的影响,在线监测和带点监测容易实现,所以目
    前电力变压器的故障诊断都是基于油中溶解气体分析技术(DGA)来实现的。传统的故障诊
    断方法主要有罗杰斯法、三比值法和特征气体法,这些方法通过不断改进,故障诊断正确率
    不断提高,在变压器的故障诊断中发挥了一定的作用。随着人工智能算法的发展,人工神经
    网络、支持向量机和贝叶斯网络等智能模式识别方法已经广泛应用到变压器的故障诊断
    中,并取得了良好的效果。但是这些模式识别方法也存在一些问题:人工神经网络在应用中
    往往受条件的限制,搜索空间和计算量大、收敛速度慢、容易陷入局部均值和且存在过拟
    合;支持向量机作为一个二分类算法,针对变压器故障诊断多分类问题,往往需要通过“一
    对多”、“一对一”或“二叉树”等方法将其进行转化,实现多分类,所以不可避免会存在误差
    累计问题;贝叶斯网络在分类过程中需要大量的样本数据,且需要将状态变量转化为离散
    变量,在离散过程中,可能会造成变压器状态信息的丢失。此外,人工神经网络、支持向量机
    和贝叶斯网络在样本数据集大致平衡的条件下,具有良好的分类性能,然而实际电力变压
    器运行过程中,正常运行的时间远远大于故障运行的时间,所以能获取到的变压器故障状
    态的数据远远少于正常状态的数据,针对这种故障样本少、正常样本多的不平衡数据集分
    类问题,这三种模式识别方法往往难以取得令人满意的效果。

    发明内容

    本发明的上述技术问题主要是通过下述技术方案得以解决的:

    一种基于支持向量描述和K近质心近邻的变压器故障诊断方法,其特征在于,包括
    以下步骤:

    步骤1:通过变压器油中溶解气体分析技术(DGA)实时采集变压器运行过程中油中
    溶解气体含量,并对获取到的数据进行预处理,构成故障诊断正常样本集和各类故障样本
    集;采集油中溶解气体含量主要包括H2、CH4、C2H6、C2H4、C2H2气体的含量;

    所述数据预处理主要包括:

    步骤1.1、数据整理:整理故障诊断样本集,剔除一些冗余、异常、无效的数据;

    步骤1.2、数据归一化:将初始数据集中的各特征气体的含量值按其取值范围全部
    归一化到[0,1]区间,在归一化时,为了同时保留油中溶解特征气体的相对含量信息和绝对
    含量信息,采用如下方法进行归一化:

    样本原始数据表示为X={x1,x2,x3,x4,x5},其中x1,x2,x3,x4,x5分别为油中H2、
    CH4、C2H6、C2H4、C2H2气体的含量;



    步骤2:使用支持向量描述方法分别对正常样本集和各类故障样本集进行训练,得
    到正常类和各故障类的超球体诊断模型;各类超求体故障诊断模型的建立过程如下:

    对于数据集xim,尽可能多的包含数据集样本的最小超球体(am,Rm)的求解定义如
    下:


    其中,am是第m类样本集训练得到的超球体的球心,Rm是第m个超球体的半径,Cm是
    惩罚常量,是松弛变量;

    分别对a和R求偏微分,并引入高斯高斯径向基核函数后,原二次规划问题可以转
    化为如下:


    求解该极值问题,即可求出计算出超球体的球心am、半径Rm;

    对于第m类超球体,其球心am、半径Rm的计算公式如下:

    am=∑αimxim


    求解该极值问题,即可求出计算出超球体的球心am,半径Rm;

    步骤3:对待检测样本进行故障诊断:根据待检测样本与超球体诊断模型之间的判
    别准则,判断待检测样本是否满足各超球体诊断模型,判断准则如下:计算待检测样本z到
    各超球体球心的距离f(z)


    如果f(z)≤R2,则待检测样本z满足该类超球体模型;否则,待检测样本z不满足该
    类超球体模型;

    并根据判断结果选择执行以下步骤:

    选择步骤1:若有多个超球体诊断模型满足,则执行步骤4;

    选择步骤2:若无超球体诊断模型满足,则执行步骤5;否则输出诊断结果,

    步骤4:采用K近质心近邻算法对属于多超球体混叠域的待检测样本进行精确分
    类,输出诊断结果,包括以下步骤:

    步骤4.1:依次取出其中两个超球体Si和Sj,分别提取出超球体Si和Sj的训练样本
    集Xi和Xj中处于混叠域的样本,得到i类的混叠样本集Ximix和Xjmix,样本数分别记为Ni和
    Nj;

    步骤4.2:对待检测样本z,分别在Ximix和Xjmix中搜索min(Ni,Nj)个K近质心近邻
    样本集A、B;

    步骤4.3:分别计算i类K近质心近邻样本的均值点和j类K近质心近邻样本的均值
    点,根据待检测样本到两均值点距离的大小判断待检测样本z类别;

    步骤5:采用K近质心近邻算法对处于所有超球体外部的待检测样本进行分类,输
    出诊断结果,包括以下步骤:

    步骤5.1:分别在每一类超球体模型的训练样本中搜索待检测样本z的K个近质心
    近邻样本;

    步骤5.2:计算每一类K个近质心近邻样本的均值点,根据待检测样本z到各均值点
    的距离判断z的类别。

    因此,本发明具有如下优点:基于支持向量描述方法建立变压器的故障诊断模型,
    学习过程简单、训练速度快,针对超球体模型中混叠域样本难以识别的问题,采用K近质心
    近邻分类算法进行分类决策,提高了混叠域样本的分类准确率,从而使变压器的故障诊断
    精度得到极大的改善;在故障诊断中,该方法除了在平衡样本集的情况下具有较好的诊断
    性能,在不平衡样本集的情况下,该方法也具有很大的适应性。。

    附图说明

    附图1为本发明方法的故障诊断系统示意图。

    附图2为本发明方法的具体故障诊断流程图。

    具体实施方式

    下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。

    实施例:

    一、首先介绍一下本发明的具体方法流程步骤。

    本发明的基本思路是:基于支持向量描述方法建立变压器故障诊断多分类超球体
    模型,针对超球体混叠域样本识别精度差的情况,引入K近质心近邻算法进行精确分类。具
    体的技术方案包括以下步骤:

    步骤1:通过变压器油中溶解气体分析技术(DGA)实时采集变压器运行过程中油中
    溶解气体含量,并对获取到的数据进行预处理,构成故障诊断正常样本集和各类故障样本
    集;步骤1中获取的油中溶解气体含量包括H2、CH4、C2H6、C2H4、C2H2气体的含量;所述数据预处
    理主要包括:

    步骤1.1:数据整理:整理故障诊断样本集,剔除一些冗余、异常、无效的数据。

    步骤1.2:数据归一化:将初始数据集中的各特征气体的含量值按其取值范围全部
    归一化到[0,1]区间。

    在归一化时,为了同时保留油中溶解特征气体的相对含量信息和绝对含量信息,
    采用如下方法进行归一化:

    样本原始数据表示为X={x1,x2,x3,x4,x5},其中x1,x2,x3,x4,x5分别为油中H2、
    CH4、C2H6、C2H4、C2H2气体的含量。



    步骤2:使用支持向量描述方法分别对正常样本集和各类故障样本集进行训练,得
    到正常类和各故障类的超球体诊断模型;建立过程如下:

    对于数据集xim,尽可能多的包含数据集样本的最小超球体(am,Rm)的求解定义如
    下:


    其中,am是第m类样本集训练得到的超球体的球心,Rm是第m个超球体的半径,Cm是
    惩罚常量,ξim是松弛变量。

    分别对a和R求偏微分,并引入高斯高斯径向基核函数后,原二次规划问题可以转
    化为如下:


    求解该极值问题,即可求出计算出超球体的球心am、半径Rm。

    对于第m类超球体,其球心am、半径Rm的计算公式如下:

    am=∑αimxim


    步骤3:对待检测样本进行故障诊断:根据待检测样本与超球体诊断模型之间的判
    别准则,判断待检测样本是否满足各超球体诊断模型,若有多个超球体诊断模型满足,则执
    行步骤4;若无超球体诊断模型满足,则执行步骤5;否则输出诊断结果。判别准则如下:计算
    待检测样本z到各超球体球心的距离f(z)


    如果f(z)≤R2,则待检测样本z满足该类超球体模型;否则,待检测样本z不满足该
    类超球体模型。

    步骤4:采用K近质心近邻算法对属于多超球体混叠域的待检测样本进行精确分
    类,输出诊断结果;详细步骤如下:

    步骤4.1:依次取出其中两个超球体Si和Sj,分别提取出超球体Si和Sj的训练样本
    集Xi和Xj中处于混叠域的样本,得到i类的混叠样本集Ximix和Xjmix,样本数分别记为Ni和Nj。

    步骤4.2:对待检测样本z,分别在Ximix和Xjmix中搜索K1个近质心近邻样本集A、B,K1
    的取值为min(Ni,Nj)?;斓炯疿imix和Xjmix中搜索待检测样本z的K1个近质心近邻的详细
    步骤如下:

    (1)查找待检测样本z的第一个近质心近邻点z1,z1是距离z的K近邻中最近的近邻
    点。

    (2)查找z的第i和近质心近邻点zi,该点定义为:计算混叠样本集中每个点与前面
    已知的i-1个近质心近邻点z1、z2、...、zi-1的质心点,然后计算这些质心点到z的距离,选取
    其中距离最小的质心点所对应的混叠样本集中的那个点为zi。

    步骤4.3:分别计算i类K1近质心近邻样本的均值点和j类K1近质心近邻样本的均值
    点,根据待检测样本到两均值点距离的大小判断待检测样本z类别。

    步骤5:采用K近质心近邻算法对处于所有超球体外部的待检测样本进行分类,输
    出诊断结果。步骤如下:

    步骤5.1:分别在每一类超球体模型的训练样本中搜索待检测样本z的K2个近质心
    近邻样本;

    步骤5.2:计算每一类K2个近质心近邻样本的均值点,根据待检测样本z到各均值
    点的距离判断z的类别。

    本步骤中在每一类超球体模型的训练样本集中搜索待检测样本z的K2个近质心近
    邻样本的搜索过程同步骤4中的搜索过程。

    二、下面是采用上述方法的具体案例。

    基于本发明方法,构建变压器的实时故障诊断系统如附图1所示:该系统由五个模
    块组成,包括油色谱分析子系统、数据采集???、数据预处理???、故障综合诊断程序、诊断
    结果显示输出。油色谱分析子系统用于对变压器运行过程中油中溶解气体的含量进行分
    析,主要包括H2、CH4、C2H6、C2H4、C2H2等气体;数据采集??楦涸鹫庑┢搴渴莸牟杉?,并
    输送到数据预处理???,由预处理??槎哉庑┦萁姓砗凸橐换?;故障综合诊断程序
    ??橛蒘VDD程序和K近质心近邻算法程序组成,SVDD程序部分包括训练程序和诊断决策程
    序,若诊断决策程序不能作出诊断决策,则调用K近质心近邻算法程序;诊断结果显示???br />实时输出变压器的诊断结果。

    本发明以某一型号为SZ11-100000的220KV变压器为例,采用本发明方法对其进行
    故障诊断。根据该变压器的故障历史资料,确定该变压器的故障类型为四类:中低温过热
    (T12)、高温过热(T3)、低能放电(D1)、高能放电(D2)。根据附图2所示的故障诊断流程,对该变
    压器故障诊断步骤详述如下:

    步骤1:通过变压器油中溶解气体分析技术(DGA)实时获取变压器运行过程中油中
    溶解气体含量,并对获取到的数据进行预处理,构成故障诊断正常样本集和各类故障样本
    集;

    数据采集??椴杉礁帽溲蛊?72组油色谱数据样本如表1所示,各类别样本集数
    目见表2。


    表1油色谱数据样本


    表2各类样本集数目


    对这172组数据按下式归一化:



    步骤2:根据支持向量描述方法,对正常样本集和各类故障样本集进行训练,得到
    正常类和各故障类超球体诊断模型;

    实例具体训练过程为:从各类样本集中分别取出18个样本数据作为训练样本训练
    超球体诊断模型,其训练过程可以转化为求解下述极值问题。高斯径向基核函数均取为
    0.92,惩罚参数均取为0.5:


    求解可以得到Lagrange乘子αim,αim>0时对应训练样本为支持向量,计算支持向
    量到球心的距离即可得到超球体的半径:

    表3各类超球体半径



    步骤3:输入待检测样本,在各类超球体故障诊断模型的基础上,进行故障诊断:

    根据如下公式计算测试样本z到各超球体距离的平方:


    并根据测试样本与超球体之间的判别准则作出判决,如果该样本处于混叠域,则
    执行步骤4,若处于所有超球体外执行步骤5。

    步骤4:采用K近质心近邻算法对属于多超球体混叠域的测试样本进行精确分类,
    其详细步骤如下:

    步骤4.1:依次取出其中两个超球体Si和Sj,分别提取出超球体Si和Sj的训练样本
    集Xi和Xj中处于混叠域的样本,得到i类的混叠样本集Ximix和Xjmix,样本数分别记为Ni和Nj。

    提取Xi和Xj中处于混叠域的样本时,分别计算Xi和Xj中各样本到来两超球体球心
    距离的平方,对于训练样本z,若f(z)<Ri2且f(z)<Rj2,则该训练样本属于两球的混叠域

    步骤4.2:对测试样本z,分别在Ximix和Xjmix中搜索K1个近质心近邻样本集A、B,K1的
    取值为min(Ni,Nj)。

    步骤4.2.1:查找测试样本z的第一个近质心近邻点z1,z1是距离z的K近邻中最近的
    近邻点。

    步骤4.2.2:查找z的第i和近质心近邻点zi,该点定义为:计算混叠样本集中每个
    点与前面已知的i-1个近质心近邻点z1、z2、...、zi-1的质心点,然后计算这些质心点到z的距
    离,选取其中距离最小的质心点所对应的混叠样本集中的那个点为zi。

    对于给定的一组样本点Z={z1,z2,..,zq},其质心可以根据下式计算:


    步骤4.3:分别计算i类K1近质心近邻样本的均值点和j类K1近质心近邻样本的均值
    点,根据待检测样本到两均值点距离的大小判断待检测样本z类别。

    待检测样本到两均值点的距离采用欧氏距离公式计算,公式如下:


    比较两欧氏距离si、sj,待检测样本的决策类别属于距离小的那一类。步骤5:采用K
    近质心近邻算法对处于所有超球体外部的待检测样本进行分类,其详细步骤如下:

    步骤5.1:分别在每一类超球体模型的训练样本中搜索待检测样本z的K2个近质心
    近邻样本;

    步骤5.2:计算每一类K2个近质心近邻样本的均值点,根据待检测样本z到各均值
    点的距离判断z的类别。

    K2的取值对处于所有超球体外部的样本的准确诊断有很大的影响。为了提高诊断
    准确率,需要找出诊断准确率最优的K值,在本实例中,经过寻优,K2的取值确定为3。

    本实例的最终诊断结果如下表:

    表4故障诊断结果



    从上表可以看出,本发明方法应用于变压器故障诊断可以获得较高的诊断正确
    率。

    本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领
    域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替
    代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

    关于本文
    本文标题:一种基于支持向量描述和K近质心近邻的变压器故障诊断方法.pdf
    链接地址://www.4mum.com.cn/p-6004675.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 福建11选5网上投注 江苏吴中股票行情 澳洲幸运10赛车计划软件 多乐彩彩票网 双色球17084期杀红球 福建11选5现场开奖 湖北11选5限号规则 易发游戏斗地主 中国体育彩票新疆11选5开奖结果 脉动棋牌官方手机版下载 河南快赢481网购 天地二分彩走势图 3d没开过的号码查询 双色球最近100期分布图 甘肃十一选五遗漏号码 极速11选5是私彩吗