• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 13
    • 下载费用:30 金币  

    重庆时时彩开奖号码表达了解到: 一种非均匀杂波环境下的雷达杂波抑制方法.pdf

    关 键 词:
    一种 均匀 环境 雷达 抑制 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201611055442.1

    申请日:

    2016.11.25

    公开号:

    CN106772253A

    公开日:

    2017.05.31

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G01S 7/02申请日:20161125|||公开
    IPC分类号: G01S7/02; G01S7/36 主分类号: G01S7/02
    申请人: 西安电子科技大学
    发明人: 王彤; 张俊飞; 张莹莹; 高海龙
    地址: 710071 陕西省西安市太白南路2号
    优先权:
    专利代理机构: 西安睿通知识产权代理事务所(特殊普通合伙) 61218 代理人: 惠文轩
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611055442.1

    授权公告号:

    |||

    法律状态公告日:

    2017.06.23|||2017.05.31

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明公开了一种非均匀杂波环境下的雷达杂波抑制方法,其主要思路为:确定机载雷达,并获取机载雷达的原始雷达回波数据,然后确定机载雷达的时域滑窗孔径;计算机载雷达第k个多普勒通道的最终空时导向矢量,并计算第l个距离门的扩展雷达回波数据,然后依次计算机载雷达第k个多普勒通道、第l个距离门对应的自适应权值和空时处理过程后第k个多普勒通道、第l个距离门的对应输出矢量和机载雷达第k个多普勒通道、第l个距离门对应的滤波输出,并计算机载雷达第l个距离门对应的滤波输出;依次令k∈{1,2,…,K},令l∈{1,2,…,L},进而得到杂波抑制后机载雷达的距离—多普勒雷达回波数据。

    权利要求书

    1.一种非均匀杂波环境下的雷达杂波抑制方法,其特征在于,包括以下步骤:
    步骤1,确定机载雷达,并获取机载雷达的原始雷达回波数据X,然后确定机载雷达的时
    域滑窗孔径Kt;
    步骤2,初始化:令k∈{1,2,…,K},k表示第k个多普勒通道,K表示机载雷达的原始雷达
    回波数据X在频率域包含的多普勒总个数,k的初始值为1;令l∈{1,2,…,L},l表示第l个距
    离门,L表示机载雷达的原始雷达回波数据X包含的距离门总个数,l的初始值为1;
    步骤3,依次计算机载雷达第k个多普勒通道进行空时处理的时域导向矢量Skt,以及机
    载雷达第k个多普勒通道的最终空时导向矢量Sk;
    步骤4,将第l个距离门的原始雷达回波数据记为xl,并计算第l个距离门的扩展雷达回
    波数据Ql,然后依次计算第l个距离门对应的训练样本数据Trainl、时域滑窗后第l个距离门
    对应的扩展训练样本数据Trainl′,以及第l个距离门对应的协方差矩阵Rl;
    步骤5,计算机载雷达第k个多普勒通道、第l个距离门对应的自适应权值wkl,进而依次
    计算空时处理过程后第k个多普勒通道、第l个距离门的对应输出矢量ykl和机载雷达第k个
    多普勒通道、第l个距离门对应的滤波输出zkl;
    步骤6,令k加1,依次重复步骤3至步骤5,直到得到机载雷达第K个多普勒通道、第l个距
    离门对应的滤波输出zKl,并将此时得到的机载雷达第1个多普勒通道、第l个距离门对应的
    滤波输出z1l至机载雷达第K个多普勒通道、第l个距离门对应的滤波输出zKl,作为机载雷达
    第l个距离门对应的滤波输出zl,zl=[z1l z2l … zkl … zKl]H,上标H表示共轭转置;
    步骤7,令l加1,依次重复步骤3至步骤6,直到得到机载雷达第L个距离门对应的滤波输
    出zL,并将此时得到的机载雷达第l个距离门对应的滤波输出zl至机载雷达第L个距离门对
    应的滤波输出zL,作为杂波抑制后机载雷达的距离—多普勒雷达回波数据Z,Z=[z1 z2 …
    zl … zL]。
    2.如权利要求1所述的一种非均匀杂波环境下的雷达杂波抑制方法,其特征在于,在步
    骤1中,所述原始雷达回波数据X为N×M×L维矩阵,N表示机载雷达的天线阵面方位向均匀
    包含的阵元个数,L表示机载雷达的原始雷达回波数据X包含的距离门个数,M表示机载雷达
    在每个相干处理周期内发射的脉冲个数;
    所述机载雷达的时域滑窗孔径Kt,其满足条件为:
    2×(M-Kt+1)≥2×Kt×N
    或者Kt为整数。
    3.如权利要求1所述的一种非均匀杂波环境下的雷达杂波抑制方法,其特征在于,在步
    骤3中,所述机载雷达第k个多普勒通道进行空时处理的时域导向矢量Skt,以及所述机载雷
    达第k个多普勒通道的最终空时导向矢量Sk,其表达式分别为:
    <mrow> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> </mrow> </msup> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mi>m</mi> </mrow> </msup> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <mi>H</mi> </msup> </mrow>
    <mrow> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mi>t</mi> </mrow> </msub> <mo>&prime;</mo> </msup> <mo>&CircleTimes;</mo> <msub> <mi>S</mi> <mi>s</mi> </msub> </mrow>
    其中,Ss表示机载雷达空时处理过程中的空域导向矢量,表示Kronecker乘积,
    n∈{0,1,2,…,N-1},表示第n个阵元接收
    机载雷达的脉冲回波数据时相对第1个阵元的相位偏移,fs表示机载雷达的空域频率,N表
    示机载雷达天线阵面方位向均匀包含的阵元个数,上标H表示共轭转置,
    m∈{0,1,2,…,M-1},M表示机载雷达在每个相干处理周期内发射的脉冲个数,表
    示机载雷达第m个脉冲相对第1个脉冲的相位偏移,fdk表示机载雷达第k个多普勒通道归一
    化的时域多普勒频率,且fdk=k-1/K;机载雷达的滑窗时域孔径Kt远远小于M,则将机载雷达
    第k个多普勒通道进行空时处理的时域导向矢量Skt中第1到第Kt个元素,作为机载雷达第k
    个多普勒通道进行空时处理的优化时域导向矢量S′kt,S′kt=Skt[1:Kt]。
    4.如权利要求1所述的一种非均匀杂波环境下的雷达杂波抑制方法,其特征在于,步骤
    4的具体过程为:
    首先,将第l个距离门的原始雷达回波数据xl,其维度为N×M,表达式为:
    xl=[x′1l x′2l … x′ml … x′Ml]
    其中,x′ml表示第m个脉冲、第l个距离门的原始雷达回波数据,且是N×1维列矢量;在满
    足且Kt为整数的条件下任意取一个整数r,作为机载雷达的时域滑窗孔径值,
    进而对第l个距离门的原始雷达回波数据xl进行孔径值为r的时域滑窗,得到
    第l个距离门的扩展雷达回波数据Ql,维度为Nr×V,其表达式为:
    Ql=[q1l q2l … qvl … qVl]
    其中,Nr=N×r,V表示第l个距离门的扩展雷达回波数据Ql包含的样本个数,V=M-r+1;
    qvl表示第v个样本、第l个距离门的扩展雷达回波数据,
    qvl=[x′vl x′(v+1)l … x′(v+r-1)l]H,x′vl表示第v个样本、第l个距离门的原始雷达回波
    数据,上标H表示共轭转置,v=1,2,…,V;所述第v个样本与对机载雷达的原始雷达回波数
    据X进行滑窗的起始脉冲编号对应;
    根据第l个距离门的原始雷达回波数据xl,分别将第l-1个距离门的原始雷达回波数据
    xl-1、将第l+1个距离门的原始雷达回波数据xl+1,进而得到第l个距离门对应的训练样本数
    据Trainl,Trainl=[xl-1 xl+1],其维度为N×M×2;
    然后,对第l个距离门对应的训练样本数据Trainl中包含的所有元素分别进行孔径值为
    r的时域滑窗,得到时域滑窗后第l个距离门对应的扩展训练样本数据Trainl′,维度为Nr×
    2V,Nr=N×r;Trainl′=[Ql-1 Ql+1],Ql-1表示第l-1个距离门的扩展雷达回波数据,Ql+1表示
    第l+1个距离门的扩展雷达回波数据;
    最后,根据时域滑窗后第l个距离门对应的扩展训练样本数据Trainl′,计算第l个距离
    门对应的协方差矩阵Rl,其表达式为:
    5.如权利要求1所述的一种非均匀杂波环境下的雷达杂波抑制方法,其特征在于,在步
    骤5中,所述机载雷达第k个多普勒通道、第l个距离门对应的自适应权值wkl,其计算式为:
    <mrow> <msub> <mi>w</mi> <mrow> <mi>k</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <msub> <mi>R</mi> <mi>l</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>S</mi> <mi>k</mi> </msub> </mrow> <mrow> <msubsup> <mi>S</mi> <mi>k</mi> <mi>H</mi> </msubsup> <msup> <msub> <mi>R</mi> <mi>l</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>S</mi> <mi>k</mi> </msub> </mrow> </mfrac> </mrow>
    其中,Rl表示第l个距离门对应的协方差矩阵,Sk表示机载雷达第k个多普勒通道的最终
    空时导向矢量,上标H表示共轭转置,上标-1表示求逆操作;
    根据机载雷达第k个多普勒通道空时处理的时域导向矢量Skt和空时处理过程后第k个
    多普勒通道、第l个距离门的对应输出矢量ykl,计算得到机载雷达第k个多普勒通道、第l个
    距离门对应的滤波输出zkl,其表达式为:
    zkl=ykl×conj(Skt[1:V])
    其中,conj[·]表示取共轭操作,Skt[1:V]表示取机载雷达第k个多普勒通道空时处理
    的时域导向矢量Skt中第1到第V个元素构成的矢量;V表示第l个距离门的扩展雷达回波数据
    Ql包含的样本个数;ykl表示空时处理过程后第k个多普勒通道、第l个距离门的对应输出矢
    量,Ql表示第l个距离门的扩展雷达回波数据,同时将第l个距离门的扩展雷达
    回波数据作为空时处理过程中第l个距离门的输入数据。

    说明书

    一种非均匀杂波环境下的雷达杂波抑制方法

    技术领域

    本发明属于雷达杂波抑制技术领域,特别涉及一种非均匀杂波环境下的雷达杂波
    抑制方法,是一种基于非均匀杂波环境下的级联二维空时处理方法,适用于斜侧阵机载雷
    达杂波抑制或非正侧阵机载雷达杂波抑制。

    背景技术

    机载预警雷达已经成为现代战争的预警情报、战场监视和作战指挥系统的重要组
    成部分,且能够显著增加低空突防目标的探测距离,大大提高武器系统的效能,使得在现在
    战争中扮演着越来越重要的角色,并受到各军事大国的高度重视?;卦ぞ状锏牟ㄊ?br />向一般是水平或稍下方向,使得机载预警雷达不可避免地会接收到地杂波。由于技术水平
    限制,使得阵列机载雷达天线的旁瓣电平较高,且阵列机载雷达回波中地杂波较强,可达
    90dB,远强于目标回波;此外,由于飞机平台的运动,地杂波的多普勒范围大大展宽,使得可
    供检测的多普勒范围大大降低,有很大一部分目标都“湮没”在地杂波中。因此,为了可靠检
    测远距离目标,首先要解决机载雷达的杂波抑制问题。

    空时自适应处理(STAP)技术的诞生追溯到20世纪70年代,在杂波协方差矩阵和目
    标信号分别确知的条件下,Brennan和Reed等在期刊Aerospace and Electronic Systems
    (AES)上,提出了全空时自适应处理(STAP)的概念和理论,其思想是将阵列信号处理的基本
    原理推广到由脉冲和阵元采样的两维场中;全空时自适应处理(STAP)能够取得比较理想的
    机载雷达杂波抑制效果,但机载雷达杂波协方差矩阵精确已知的条件在工程实现中难以满
    足,通常情况下是由参考单元估计得到;为了使空时自适应处理(STAP)器的性能损失不超
    过3dB,空时自适应处理(STAP)器训练样本个数至少应为机载雷达系统自由度的两倍,而
    且,机载雷达杂波协方差矩阵须从独立同分布的训练样本估计而来,所以全空时自适应处
    理(STAP)的运算量和设备复杂度令人难以接受。

    为了降低运算量,德国的R.Klemm博士于1987年在期刊Signal Processing上提出
    了辅助通道法,将空时自适应处理(STAP)器维数从NM降至N+M-1,此处N表示机载雷达天线
    阵元个数,M表示一个相干处理间隔内机载雷达接收的脉冲个数;在没有误差的理想情况
    下,该方法能够取得比较理想的杂波抑制效果,性能接近最优空时自适应处理(STAP)处理,
    并且降低了估计杂波协方差矩阵所需要的独立同分布参考单元数目,但在有误差情况下,
    该方法的杂波抑制性能并不理想。

    国内的西安电子科技大学在降维空时自适应处理(STAP)研究方面也展开了大量
    工作,并提出了局域化处理法,即因子化方法(1DT)和扩展因子化方法(mDT);该局域化处理
    法首先利用低旁瓣的多普勒滤波器对机载雷达回波进行局域化处理,然后在空域自适应处
    理或空时域联合自适应处理将雷达杂波抑制掉;但这种局域化的处理方法依然需要大量满
    足独立同分布的训练样本来构造协方差矩阵,在非均匀杂波环境下,几乎很难得到大量满
    足独立同分布要求的样本,所以在非均匀杂波环境下的杂波抑制性能并没有得到大的改
    善。

    发明内容

    针对上述现有技术存在的不足,本发明的目的在于提出一种非均匀杂波环境下的
    雷达杂波抑制方法,该种非均匀杂波环境下的雷达杂波抑制方法能够充分利用待检样本附
    近的少量样本作为局部训练样本,采用相干积累的形式保证信号增益,同时又保证了足够
    多的自由度进行雷达杂波的充分抑制。

    为达到上述技术目的,本发明采用如下技术方案予以实现。

    一种非均匀杂波环境下的雷达杂波抑制方法,包括以下步骤:

    步骤1,确定机载雷达,并获取机载雷达的原始雷达回波数据X,然后确定机载雷达
    的时域滑窗孔径Kt;

    步骤2,初始化:令k∈{1,2,…,K},k表示第k个多普勒通道,K表示机载雷达的原始
    雷达回波数据X在频率域包含的多普勒总个数,k的初始值为1;令l∈{1,2,…,L},l表示第l
    个距离门,L表示机载雷达的原始雷达回波数据X包含的距离门总个数,l的初始值为1;

    步骤3,依次计算机载雷达第k个多普勒通道进行空时处理的时域导向矢量Skt,以
    及机载雷达第k个多普勒通道的最终空时导向矢量Sk;

    步骤4,将第l个距离门的原始雷达回波数据记为xl,并计算第l个距离门的扩展雷
    达回波数据Ql,然后依次计算第l个距离门对应的训练样本数据Trainl、时域滑窗后第l个距
    离门对应的扩展训练样本数据Trainl′,以及第l个距离门对应的协方差矩阵Rl;

    步骤5,计算机载雷达第k个多普勒通道、第l个距离门对应的自适应权值wkl,进而
    依次计算空时处理过程后第k个多普勒通道、第l个距离门的对应输出矢量ykl和机载雷达第
    k个多普勒通道、第l个距离门对应的滤波输出zkl;

    步骤6,令k加1,依次重复步骤3至步骤5,直到得到机载雷达第K个多普勒通道、第l
    个距离门对应的滤波输出zKl,并将此时得到的机载雷达第1个多普勒通道、第l个距离门对
    应的滤波输出z1l至机载雷达第K个多普勒通道、第l个距离门对应的滤波输出zKl,作为机载
    雷达第l个距离门对应的滤波输出zl,zl=[z1l z2l … zkl … zKl]H,上标H表示共轭转置;

    步骤7,令l加1,依次重复步骤3至步骤6,直到得到机载雷达第L个距离门对应的滤
    波输出zL,并将此时得到的机载雷达第l个距离门对应的滤波输出zl至机载雷达第L个距离
    门对应的滤波输出zL,作为杂波抑制后机载雷达的距离—多普勒雷达回波数据Z,Z=[z1 z2
    … zl … zL]。

    本发明与现有技术相比具有以下优点:

    第一,本发明中提出的方法在训练样本较少的情况下,能够通过时域滑窗的方式
    提供充足的自由度来抑制雷达杂波。

    第二,使用常规的扩展因子化方法(mDT)估计机载雷达杂波协方差矩阵时,选取的
    训练样本距离维跨度较大,导致在非均匀杂波环境下,不能很好地估计当前距离门对应的
    协方差矩阵,而本发明方法使得训练样本选择局域化,修正了扩展因子化方法协方差矩阵
    估计不准的缺陷,m=3。

    附图说明

    下面结合附图和具体实施方式对本发明作进一步详细说明。

    图1是本发明的一种非均匀杂波环境下的雷达杂波抑制方法流程图;

    图2(a)是使用扩展因子化方法(mDT)进行杂波抑制后得到的距离—多普勒图,其
    中横坐标为多普勒通道,纵坐标为距离门,m=3;

    图2(b)是使用本发明方法进行杂波抑制后得到的距离—多普勒图,其中横坐标为
    多普勒通道,纵坐标为距离门;

    图3(a)是分别使用扩展因子化方法(mDT)和本发明方法进行杂波抑制处理后1-
    150号距离门对应的杂波剩余图,其中横坐标表示多普勒通道,纵坐标表示杂波剩余,单位
    为dB,m=3;

    图3(b)是分别使用扩展因子化方法(mDT)和本发明方法进行杂波抑制处理后150-
    349号距离门对应的杂波剩余图;其中横坐标表示多普勒通道,纵坐标表示杂波剩余,单位
    为dB,m=3。

    具体实施方式

    参考图1,为本发明的一种非均匀杂波环境下的雷达杂波抑制方法流程图;本发明
    的一种机载雷达杂波抑制方法,包括以下步骤:

    步骤1,确定机载雷达,并获取机载雷达的原始雷达回波数据X,然后确定机载雷达
    的时域滑窗孔径Kt。

    具体地,确定机载雷达,并获取机载雷达的原始雷达回波数据X,所述原始雷达回
    波数据X为N×M×L维矩阵,N表示机载雷达的天线阵面方位向均匀包含的阵元个数,M表示
    机载雷达在每个相干处理周期内发射的脉冲个数;L表示机载雷达的原始雷达回波数据X包
    含的距离门总个数;定义机载雷达的原始雷达回波数据X在频率域包含的多普勒总个数为
    K,且K得取值为大于M且为2的幂次方整数;然后确定机载雷达的滑窗时域孔径Kt,使其满足
    下式:

    2×(M-Kt+1)≥2×Kt×N

    或者Kt为整数。

    步骤2,初始化:令k∈{1,2,…,K},k表示第k个多普勒通道,k的初始值为1;K表示
    机载雷达的原始雷达回波数据X在频率域包含的多普勒总个数;令l∈{1,2,…,L},l表示第
    l个距离门,L表示机载雷达的原始雷达回波数据X包含的距离门总个数,l的初始值为1。

    步骤3,依次计算机载雷达第k个多普勒通道进行空时处理的时域导向矢量Skt,以
    及机载雷达第k个多普勒通道的最终空时导向矢量Sk。

    具体地,将机载雷达空时处理过程中的空域导向矢量记为Ss,其表达式为:


    其中,n∈{0,1,2,…,N-1},表示第n个阵元接收机载雷达的脉冲回波数据时
    相对第1个阵元的相位偏移,fs表示机载雷达的空域频率,N表示机载雷达天线阵面方位向
    均匀包含的阵元个数,上标H表示共轭转置。

    将机载雷达第k个多普勒通道进行空时处理的时域导向矢量记为Skt,其表达式为:


    其中,上标H表示共轭转置,m∈{0,1,2,…,M-1},M表示机载雷达在每个相干处理
    周期内发射的脉冲个数,表示机载雷达第m个脉冲相对第1个脉冲的相位偏移,fdk表
    示机载雷达第k个多普勒通道归一化的时域多普勒频率,且fdk=k-1/K;机载雷达的滑窗时
    域孔径Kt远远小于M,则将机载雷达第k个多普勒通道进行空时处理的时域导向矢量Skt中第
    1到第Kt个元素,作为机载雷达第k个多普勒通道进行空时处理的优化时域导向矢量S′kt,其
    表达式为:

    S′kt=Skt[1:Kt]

    其中,Skt[1:Kt]表示取机载雷达第k个多普勒通道进行空时处理的时域导向矢量
    Skt中第1到第Kt个元素构成的矢量;进而计算得到机载雷达第k个多普勒通道的最终空时导
    向矢量Sk,Ss表示机载雷达空时处理过程中的空域导向矢量,表示
    Kronecker乘积。

    步骤4,将第l个距离门的原始雷达回波数据记为xl,并计算第l个距离门的扩展雷
    达回波数据Ql,然后依次计算第l个距离门对应的训练样本数据Trainl、时域滑窗后第l个距
    离门对应的扩展训练样本数据Trainl′,以及第l个距离门对应的协方差矩阵Rl。

    具体的,定义一种滑窗处理过程(SlideWinProc)如下:

    首先,将第l个距离门的原始雷达回波数据记为xl,其维度为N×M,表达式为:

    xl=[x1′l x′2l … x′ml … x′Ml]

    其中,x′ml表示第m个脉冲、第l个距离门的原始雷达回波数据,且是N×1维列矢量;
    m=1,2,…,M,l=1,2,…,L;由于机载雷达的时域滑窗孔径Kt满足且Kt为整
    数,则任意取一个满足条件的整数r,作为机载雷达的时域滑窗孔径值,进而对第l个距离门
    的原始雷达回波数据xl进行孔径值为r的时域滑窗,得到第l个距离门的扩展
    雷达回波数据Ql,维度为Nr×V,其表达式为:

    Ql=[q1l q2l … qvl … qVl]

    其中,Nr=N×r,V表示第l个距离门的扩展雷达回波数据Ql包含的样本个数,V=M-
    r+1;qvl表示第v个样本、第l个距离门的扩展雷达回波数据,qvl=[x′vl x′(v+1)l … x
    ′(v+r-1)l]H,x′vl表示第v个样本、第l个距离门的原始雷达回波数据,上标H表示共轭转置,v=
    1,2,…,V;所述第v个样本与对机载雷达的原始雷达回波数据X进行滑窗的起始脉冲编号对
    应。

    根据第l个距离门的原始雷达回波数据xl,分别将第l-1个距离门的原始雷达回波
    数据xl-1、将第l+1个距离门的原始雷达回波数据xl+1,进而得到第l个距离门对应的训练样
    本数据Trainl,Trainl=[xl-1 xl+1],其维度为N×M×2。

    然后,对第l个距离门对应的训练样本数据Trainl中包含的所有元素分别进行孔
    径值为r的时域滑窗,得到时域滑窗后第l个距离门对应的扩展训练样本数据Trainl′,维度
    为Nr×2V,Nr=N×r;Trainl′=[Ql-1 Ql+1],Ql-1表示第l-1个距离门的扩展雷达回波数据,
    Ql+1表示第l+1个距离门的扩展雷达回波数据。

    最后,根据时域滑窗后第l个距离门对应的扩展训练样本数据Trainl′,计算第l个
    距离门对应的协方差矩阵Rl,其表达式为:


    其中,上标H表示共轭转置。

    步骤5,计算机载雷达第k个多普勒通道、第l个距离门对应的自适应权值wkl,进而
    依次计算空时处理过程后第k个多普勒通道、第l个距离门的对应输出矢量ykl和机载雷达第
    k个多普勒通道、第l个距离门对应的滤波输出zkl。

    具体地,所述机载雷达第k个多普勒通道、第l个距离门对应的自适应权值wkl,其计
    算式为:


    其中,Rl表示第l个距离门对应的协方差矩阵,Sk表示机载雷达第k个多普勒通道的
    最终空时导向矢量,上标H表示共轭转置,上标-1表示求逆操作。

    将第l个距离门的扩展雷达回波数据Ql,作为空时处理过程中第l个距离门的输入
    数据,然后将第k个多普勒通道、第l个距离门对应的自适应权值记为wkl,进而计算空时处理
    过程后第k个多普勒通道、第l个距离门的对应输出矢量ykl,其表达式为:


    其中,上标H表示共轭转置。

    根据机载雷达第k个多普勒通道空时处理的时域导向矢量Skt和空时处理过程后第
    k个多普勒通道、第l个距离门的对应输出矢量ykl,计算得到机载雷达第k个多普勒通道、第l
    个距离门对应的滤波输出zkl,其表达式为:

    zkl=ykl×conj(Skt[1:V])

    其中,conj[·]表示取共轭操作,Skt[1:V]表示取机载雷达第k个多普勒通道空时
    处理的时域导向矢量Skt中第1到第V个元素构成的矢量;V表示第l个距离门的扩展雷达回波
    数据Ql包含的样本个数。

    所述机载雷达第k个多普勒通道、第l个距离门单元对应的滤波输出zkl完成了第k
    个多普勒通道、第l个距离门的杂波抑制。

    步骤6,令k加1,依次重复步骤3至步骤5,直到得到机载雷达第K个多普勒通道、第l
    个距离门对应的滤波输出zKl,并将此时得到的机载雷达第1个多普勒通道、第l个距离门对
    应的滤波输出z1l至机载雷达第K个多普勒通道、第l个距离门对应的滤波输出zKl,作为机载
    雷达第l个距离门对应的滤波输出zl,zl=[z1l z2l … zkl … zKl]H,上标H表示共轭转置。

    步骤7,令l加1,依次重复步骤3至步骤6,直到得到机载雷达第L个距离门对应的滤
    波输出zL,并将此时得到的机载雷达第l个距离门对应的滤波输出zl至机载雷达第L个距离
    门对应的滤波输出zL,作为杂波抑制后机载雷达的距离—多普勒雷达回波数据Z,Z=[z1 z2
    … zl … zL]。

    至此,本发明的一种非均匀杂波环境下的雷达杂波抑制方法结束。

    通过以下仿真实验对本发明效果作进一步验证说明。

    (一)实验参数及实验条件

    机载雷达的天线阵面结构采用椭圆斜侧阵面,并且各个阵元均匀排列在椭圆斜侧
    阵面上,机载雷达的天线阵面的方位向和俯仰向分别均匀排列56个阵元和10个阵元,阵元
    间距为d=λ/2,λ为机载雷达的载波波长,机载雷达在每个相干处理周期内发射的脉冲个数
    M为220,机载雷达的原始雷达回波数据X包含的距离门个数为349。

    (二)实验内容及结果分析

    分别采用扩展因子化方法(mDT)和本发明方法对原始雷达回波数据进行杂波抑
    制,得到的两幅距离—多普勒图分别如图2(a)、图2(b)所示;图2(a)是使用扩展因子化方法
    (mDT)进行杂波抑制后得到的距离—多普勒图,其中横坐标为多普勒通道,纵坐标为距离
    门,m=3;图2(b)是使用本发明方法进行杂波抑制后得到的距离—多普勒图,其中横坐标为
    多普勒通道,纵坐标为距离门;图2(a)、图2(b)中的白色区域分别表示杂波抑制后的杂波剩
    余功率分布,黑色区域分别表示杂波抑制后的噪声剩余功率分布。

    从图2(a)中可以看出,采用扩展因子化方法(mDT)对原始雷达回波数据进行杂波
    抑制后,杂波剩余功率较强,尤其在旁瓣杂波区,m=3;从图2(b)中可以看出,本发明方法能
    够有效降低杂波剩余,对旁瓣杂波的抑制性能较好,有利于后续对目标进行检测。

    分别使用扩展因子化方法(mDT)和本发明方法对对原始雷达回波数据进行杂波抑
    制,分别得到两种方法的杂波剩余比较图,如图3(a)和图3(b)所示;图3(a)是分别使用扩展
    因子化方法(mDT)和本发明方法进行杂波抑制处理后1-150号距离门对应的杂波剩余图,其
    中横坐标表示多普勒通道,纵坐标表示杂波剩余,单位为dB,m=3;图3(b)是分别使用扩展
    因子化方法(mDT)和本发明方法进行杂波抑制处理后150-349号距离门对应的杂波剩余图;
    其中横坐标表示多普勒通道,纵坐标表示杂波剩余,单位为dB,m=3。

    从图3(a)和图3(b)可以看出,与扩展因子化方法(mDT)相比,本发明方法在保证信
    号增益不变的前提下有效抑制旁瓣杂波,m=3。

    综上所述,仿真实验验证了本发明的正确性,有效性和可靠性。

    显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精
    神和范围;这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围
    之内,则本发明也意图包含这些改动和变型在内。

    关于本文
    本文标题:一种非均匀杂波环境下的雷达杂波抑制方法.pdf
    链接地址://www.4mum.com.cn/p-6001415.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 北京pk10走势图怎么看 足球哪些投注网站 双色球投注单详解 2018双色球开奖记录 广东11选5任一稳赚公式 万人龙虎计划 投注比例与赛果概率比较分析 时时彩玩什么可以稳赚 江苏时时开奖视频直播 北京pk10五码稳定计划 最新大乐透中奖规则表 哪个平台用御彩轩计划软件 1382472倍投图片 时时彩不定位包胆 全天pk10最精准计划 上海时时开奖信息查询系统