• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 14
    • 下载费用:30 金币  

    重庆时时彩国家保护吗: 车辆定位方法及装置.pdf

    关 键 词:
    车辆 定位 方法 装置
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201611110919.1

    申请日:

    2016.12.06

    公开号:

    CN106772238A

    公开日:

    2017.05.31

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G01S 5/06申请日:20161206|||公开
    IPC分类号: G01S5/06 主分类号: G01S5/06
    申请人: 东软集团股份有限公司
    发明人: 张珠华
    地址: 110179 辽宁省沈阳市浑南新区新秀街2号
    优先权:
    专利代理机构: 北京英创嘉友知识产权代理事务所(普通合伙) 11447 代理人: 魏嘉熹;南毅宁
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611110919.1

    授权公告号:

    |||

    法律状态公告日:

    2017.06.23|||2017.05.31

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本公开涉及一种车辆定位方法及装置。该方法包括:在本车与N个位置可知的邻近参考点进行通信时,获取M个邻近参考点的接收信号强度信息和位置信息;根据接收信号强度信息,确定本车与M个邻近参考点中的各个邻近参考点之间的距离;根据本车与M个邻近参考点中的各个邻近参考点之间的距离、以及M个邻近参考点的位置信息,确定本车的实际位置信息。由此,当本车进入GNSS信号覆盖盲区时,仍能够协同其他的邻近参考点来辅助确定自身位置,并且定位精度高、误差小,能够满足车辆处于GNSS盲区时碰撞预警等应用的需求。

    权利要求书

    1.一种车辆定位方法,其特征在于,所述方法包括:
    在本车与N个位置可知的邻近参考点进行通信时,获取M个邻近参考点的接收信号强度
    信息和位置信息,其中,N和M为自然数,并且,3≤M≤N;
    根据所述接收信号强度信息,确定所述本车与所述M个邻近参考点中的各个邻近参考
    点之间的距离;
    根据所述本车与所述M个邻近参考点中的各个邻近参考点之间的距离、以及所述M个邻
    近参考点的位置信息,确定本车的实际位置信息。
    2.根据权利要求1所述的方法,其特征在于,所述M个邻近参考点的接收信号强度信息
    是在所述N个位置可知的邻近参考点中,按照接收信号强度信息从大到小的顺序,排名在前
    M个的邻近参考点的接收信号强度信息。
    3.根据权利要求1所述的方法,其特征在于,所述根据所述接收信号强度信息,确定所
    述本车与所述M个邻近参考点中的各个邻近参考点之间的距离,包括:
    <mrow> <msub> <mi>RSSI</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mover> <mi>i</mi> <mo>&CenterDot;</mo> </mover> </msub> <mo>+</mo> <mn>10</mn> <mi>a</mi> <mi>lg</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>d</mi> <mi>i</mi> </msub> <msub> <mi>d</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mi>&sigma;</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow>
    其中,RSSIi表示本车获取到的所述M个邻近参考点中的第i个邻近参考点的接收信号强
    度;
    di表示本车与所述M个邻近参考点中的第i个邻近参考点之间的距离;
    d0i表示本车与所述M个邻近参考点中的第i个邻近参考点之间的参考距离;
    Ai表示在本车与所述M个邻近参考点中的第i个邻近参考点之间相距参考距离d0i时,本
    车获取到的第i个邻近参考点的接收信号强度;
    Xσ表示随机变量;
    a表示路径损耗指数。
    4.根据权利要求1所述的方法,其特征在于,M≥4;以及,
    所述根据所述本车与所述M个邻近参考点中的各个邻近参考点之间的距离、以及所述M
    个邻近参考点的位置信息,确定本车的实际位置信息,包括:
    根据本车与所述M个邻近参考点中的任意三个邻近参考点之间的距离,以及所述任意
    三个邻近参考点的位置信息,确定本车的多个潜在位置信息;
    根据所述本车的多个潜在位置信息,确定所述本车的实际位置信息。
    5.根据权利要求4所述的方法,其特征在于,所述根据所述本车的多个潜在位置信息,
    确定所述本车的实际位置信息,包括:
    构建本车位置分布概率方程;
    根据所述本车的多个潜在位置信息,利用二维高斯迭代法,求取所述本车位置分布概
    率方程的最优解,并将所述最优解确定为是所述本车的实际位置信息。
    6.根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    向与所述本车通信的邻近参考点发送所述本车的实际位置信息。
    7.一种车辆定位装置,其特征在于,所述装置包括:
    获取???,用于在本车与N个位置可知的邻近参考点进行通信时,获取M个邻近参考点
    的接收信号强度信息和位置信息,其中,N和M为自然数,并且,3≤M≤N;
    距离确定???,用于根据所述接收信号强度信息,确定所述本车与所述M个邻近参考点
    中的各个邻近参考点之间的距离;
    定位???,用于根据所述本车与所述M个邻近参考点中的各个邻近参考点之间的距离、
    以及所述M个邻近参考点的位置信息,确定本车的实际位置信息。
    8.根据权利要求7所述的装置,其特征在于,所述距离确定??橛糜谕ü韵路绞饺范?br />所述本车与所述M个邻近参考点中的各个邻近参考点之间的距离:
    <mrow> <msub> <mi>RSSI</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mover> <mi>i</mi> <mo>&CenterDot;</mo> </mover> </msub> <mo>+</mo> <mn>10</mn> <mi>a</mi> <mi>lg</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>d</mi> <mi>i</mi> </msub> <msub> <mi>d</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mi>&sigma;</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow>
    其中,RSSIi表示本车获取到的所述M个邻近参考点中的第i个邻近参考点的接收信号强
    度;
    di表示本车与所述M个邻近参考点中的第i个邻近参考点之间的距离;
    d0i表示本车与所述M个邻近参考点中的第i个邻近参考点之间的参考距离;
    Ai表示在本车与所述M个邻近参考点中的第i个邻近参考点之间相距参考距离d0i时,本
    车获取到的第i个邻近参考点的接收信号强度;
    Xσ表示随机变量;
    a表示路径损耗指数。
    9.根据权利要求7所述的装置,其特征在于,M≥4;以及,
    所述定位??榘ǎ?br />第一确定子???,用于根据本车与所述M个邻近参考点中的任意三个邻近参考点之间
    的距离,以及所述任意三个邻近参考点的位置信息,确定本车的多个潜在位置信息;
    第二确定子???,用于根据所述本车的多个潜在位置信息,确定所述本车的实际位置
    信息。
    10.根据权利要求9所述的装置,其特征在于,所述第二确定子??榘ǎ?br />方程构建子???,用于构建本车位置分布概率方程;
    求解子???,用于根据所述本车的多个潜在位置信息,利用二维高斯迭代法,求取所述
    本车位置分布概率方程的最优解,并将所述最优解确定为是所述本车的实际位置信息。

    说明书

    车辆定位方法及装置

    技术领域

    本公开涉及车联网领域,具体地,涉及一种车辆定位方法及装置。

    背景技术

    随着人们的生活水平不断提高,对车辆的需求也开始不断增加。汽车保有量的增
    加在为人们的日常生活提供便利的同时,也为社会带来了诸多问题,如交通事故、交通拥堵
    以及环境污染等问题。智能交通系统(ITS,Intelligent Transportation Systems)作为一
    种全新的技术,采用先进的科学技术,将涉及的道路、交通、人与环境等系统的综合考虑,实
    现智能化的交通管理,为解决道路交通问题带来可能和希望。

    作为智能交通系统的重要组成部分的车载自组织网络(Vehicle Ad hoc
    Networks,VANET)就是在此背景下提出的。VANET具有节点性、数据流特性以及移动的特性,
    其所提供的服务大多是基于位置的服务(LBS,Location Based Service),包括如紧急避
    险、防碰撞等在内的所有安全应用的核心部分,都需要车辆能够获得精确自主的地理空间
    位置信息。目前VANET应用中,使用较多的定位技术是全球卫星导航系统(Global
    Navigation Satellite System,GNSS),为车辆应用提供全面的位置信息。并且,GPS的地面
    接收信号的设备成本较低,而且卫星分布广泛,信号的覆盖范围广,使得这种定位技术比其
    他如雷达等的定位技术更具吸引力。并且,目前通过差分等技术方案,GPS的定位误差已经
    在1m范围内,可以满足绝大多数的应用需求。

    但是,在隧道或城市密集区,GNSS信号被阻挡,导致定位性能大大降低。针对这种
    情况,通常的做法是使用惯性导航进行绝对定位。但大量的研究表明,在这种方式中,随着
    时间的推移,定位误差具有随时间积累的特性,有研究结果表明时间超过30秒时,测距误差
    超过50米,在这种情况下的定位精度明显不能满足VANET环境中紧急避险、防碰撞等场景的
    需求。

    发明内容

    本公开的目的是提供一种车辆定位方法及装置,以辅助车辆在GNSS盲区时进行车
    辆位置的精确定位,从而满足VANET环境下车间应用对定位精度的要求。

    为了实现上述目的,本公开提供一种车辆定位方法,所述方法包括:在本车与N个
    位置可知的邻近参考点进行通信时,获取M个邻近参考点的接收信号强度信息和位置信息,
    其中,N和M为自然数,并且,3≤M≤N;根据所述接收信号强度信息,确定所述本车与所述M个
    邻近参考点中的各个邻近参考点之间的距离;根据所述本车与所述M个邻近参考点中的各
    个邻近参考点之间的距离、以及所述M个邻近参考点的位置信息,确定本车的实际位置信
    息。

    可选地,所述M个邻近参考点的接收信号强度信息是在所述N个位置可知的邻近参
    考点中,按照接收信号强度信息从大到小的顺序,排名在前M个的邻近参考点的接收信号强
    度信息。

    可选地,所述根据所述接收信号强度信息,确定所述本车与所述M个邻近参考点中
    的各个邻近参考点之间的距离,包括:


    其中,RSSIi表示本车获取到的所述M个邻近参考点中的第i个邻近参考点的接收
    信号强度;di表示本车与所述M个邻近参考点中的第i个邻近参考点之间的距离;d0i表示本
    车与所述M个邻近参考点中的第i个邻近参考点之间的参考距离;Ai表示在本车与所述M个
    邻近参考点中的第i个邻近参考点之间相距参考距离d0i时,本车获取到的第i个邻近参考点
    的接收信号强度;Xσ表示随机变量;a表示路径损耗指数。

    可选地,M≥4;以及,所述根据所述本车与所述M个邻近参考点中的各个邻近参考
    点之间的距离、以及所述M个邻近参考点的位置信息,确定本车的实际位置信息,包括:根据
    本车与所述M个邻近参考点中的任意三个邻近参考点之间的距离,以及所述任意三个邻近
    参考点的位置信息,确定本车的多个潜在位置信息;根据所述本车的多个潜在位置信息,确
    定所述本车的实际位置信息。

    可选地,所述根据所述本车的多个潜在位置信息,确定所述本车的实际位置信息,
    包括:构建本车位置分布概率方程;根据所述本车的多个潜在位置信息,利用二维高斯迭代
    法,求取所述本车位置分布概率方程的最优解,并将所述最优解确定为是所述本车的实际
    位置信息。

    可选地,所述方法还包括:向与所述本车通信的邻近参考点发送所述本车的实际
    位置信息。

    本公开还提供一种车辆定位装置,所述装置包括:获取???,用于在本车与N个位
    置可知的邻近参考点进行通信时,获取M个邻近参考点的接收信号强度信息和位置信息,其
    中,N和M为自然数,并且,3≤M≤N;距离确定???,用于根据所述接收信号强度信息,确定所
    述本车与所述M个邻近参考点中的各个邻近参考点之间的距离;定位???,用于根据所述本
    车与所述M个邻近参考点中的各个邻近参考点之间的距离、以及所述M个邻近参考点的位置
    信息,确定本车的实际位置信息。

    可选地,所述M个邻近参考点的接收信号强度信息是在所述N个位置可知的邻近参
    考点中,按照接收信号强度信息从大到小的顺序,排名在前M个的邻近参考点的接收信号强
    度信息。

    可选地,所述距离确定??橛糜谕ü韵路绞饺范ㄋ霰境涤胨鯩个邻近参考
    点中的各个邻近参考点之间的距离:


    其中,RSSIi表示本车获取到的所述M个邻近参考点中的第i个邻近参考点的接收
    信号强度;di表示本车与所述M个邻近参考点中的第i个邻近参考点之间的距离;d0i表示本
    车与所述M个邻近参考点中的第i个邻近参考点之间的参考距离;Ai表示在本车与所述M个
    邻近参考点中的第i个邻近参考点之间相距参考距离d0i时,本车获取到的第i个邻近参考点
    的接收信号强度;Xσ表示随机变量;a表示路径损耗指数。

    可选地,M≥4;以及,所述定位??榘ǎ旱谝蝗范ㄗ幽??,用于根据本车与所述M
    个邻近参考点中的任意三个邻近参考点之间的距离,以及所述任意三个邻近参考点的位置
    信息,确定本车的多个潜在位置信息;第二确定子???,用于根据所述本车的多个潜在位置
    信息,确定所述本车的实际位置信息。

    可选地,所述第二确定子??榘ǎ悍匠坦菇ㄗ幽??,用于构建本车位置分布概率
    方程;求解子???,用于根据所述本车的多个潜在位置信息,利用二维高斯迭代法,求取所
    述本车位置分布概率方程的最优解,并将所述最优解确定为是所述本车的实际位置信息。

    可选地,所述装置还包括:发送???,用于向与所述本车通信的邻近参考点发送所
    述本车的实际位置信息。

    在上述技术方案中,通过获取多个邻近参考点的接收信号强度信息,能够确定出
    本车与这些邻近参考点之间的相对位置信息,并结合这些邻近参考点自身的绝对位置,可
    以定位出本车实际的绝对位置。这样,当本车进入GNSS信号覆盖盲区时,仍能够协同其他的
    邻近参考点来辅助确定自身位置,并且定位精度高、误差小,能够满足车辆处于GNSS盲区时
    碰撞预警等应用的需求。

    本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。

    附图说明

    附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具
    体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:

    图1是根据本公开的一示例性实施例示出的车辆定位方法的流程图。

    图2是三边测量定位法的原理示意图。

    图3是利用三边测量定位法确定出的接收节点的位置点的分布示意图。

    图4是根据本公开的另一示例性实施例示出的车辆定位方法的流程图。

    图5是根据本公开的一示例性实施例示出的车辆定位装置的结构框图。

    图6是根据本公开的另一示例性实施例示出的车辆定位装置的结构框图。

    具体实施方式

    以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描
    述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。

    图1是根据本公开的一示例性实施例示出的车辆定位方法的流程图。如图1所示,
    该方法可以包括以下步骤:

    在步骤101中,在本车与N个位置可知的邻近参考点进行通信时,获取M个邻近参考
    点的接收信号强度信息和位置信息,其中,N和M为自然数,并且,3≤M≤N。

    在现有的车车安全的解决方案中,DSRC(Dedicated Short Range
    Communications,专用短程通信技术)是车载网络的V2V通信(车车通信)及V2I通信(车辆与
    路边单元通信)的主要手段。因此,在本公开的一个示例实施方式中,本车与邻近参考点之
    间可以进行DSRC通信。并且,在这种情况下,邻近参考点可以包括邻近车辆和/或邻近路边
    单元。

    在本车与邻近参考点进行DSRC通信的过程中,本车可以将自身的位置信息发送给
    邻近参考点,以便邻近参考点基于本车位置来进行碰撞预警等操作;同时,本车也可以获取
    邻近参考点发送的关于该邻近参考点的位置信息,以便本车基于该邻近参考点的位置信息
    来进行碰撞预警等操作。发明人在研究中发现,当本车处于GNSS信号覆盖盲区时,本车无法
    获取到自身的GPS位置信息,但这并不影响其与邻近参考点之间的DSRC通信。本车可以依赖
    于DSRC通信,获取到其他没有位于GNSS信号覆盖盲区的邻近参考点(即,其位置可知)的位
    置信息。此外,当本车与邻近参考点进行通信时,还能获取到该邻近参考点的接收信号强度
    信息(RSSI)。这样,本车可以依赖于这些邻近参考点的位置信息和RSSI,来辅助定位自身位
    置,如以下所描述的。

    在步骤102中,根据接收信号强度信息,确定本车与M个邻近参考点中的各个邻近
    参考点之间的距离。

    RSSI的大小能够反映出本车距离相应的邻近参考点的远近。在无线电传输过程
    中,在接收器和发送器之间的信号功率随距离成反比例衰减,研究表明,信道的长距离衰落
    特性服从对数正态分布,常用对数距离路径损耗模型表示,其路径损耗模型可以用如下公
    式表示:


    其中,d是发射节点和接收节点之间的待测距离;a为路径衰耗指数,表示路径损耗
    随距离增加而增大的快慢,其取值范围是[2,5];Xσ是随机变量,其服从正态分布;d0是已知
    的参考距离;PL(d0)表示参考距离为d0时的路径损耗。

    接收节点接收到的信号强度为:

    RSSI=Pt-PL(d) (2)

    其中,Pt表示信号的发射功率,PL(d)表示参考距离为d时的路径损耗。

    因此,距离发射节点d0处的参考点的接收信号强度A=Pt-PL(d0),得:

    PL(d0)=Pt-A (3)

    把公式(2)及(3)代入公式(1),得:


    通过上述公式可知,在VANET环境下,接收节点的信号强度RSSI可以实时获取,并
    且发射功率已知。以节点B、C为例说明,假设B为发送节点,C为接收节点。初始一段时间,B、C
    节点都可以实时获取到GNSS信息,可根据GPS信息计算出两节点间参考距离为d0,并获取其
    对应的时刻的接收信号强度A。当接收节点C进入GNSS盲区时,此时采集不到GPS信息,则可
    以利用公式(4)能够计算出节点C与节点B之间的距离d。

    综上,本公开中,可以通过以下公式来确定本车与M个邻近参考点中的各个邻近参
    考点之间的距离:


    其中,RSSIi表示本车获取到的M个邻近参考点中的第i个邻近参考点的接收信号
    强度;di表示本车与M个邻近参考点中的第i个邻近参考点之间的距离;d0i表示本车与M个邻
    近参考点中的第i个邻近参考点之间的参考距离;Ai表示在本车与M个邻近参考点中的第i
    个邻近参考点之间相距参考距离d0i时,本车获取到的第i个邻近参考点的接收信号强度。

    在步骤103中,根据本车与M个邻近参考点中的各个邻近参考点之间的距离、以及M
    个邻近参考点的位置信息,确定本车的实际位置信息。

    示例地,可以基于三边测量定位算法来确定本车的实际位置。三边测量定位算法
    的基本原理为:在基于接收信号强度RSSI的车辆间测距基础上,通过搜集到的其他车辆或
    路边单元的位置信息,并通过测距算法计算出发送节点与接收节点之间的距离。通过这些
    数据的统计分析,接收到的数据及通过测距算法计算出发送节点与接收节点间的距离,可
    以形成一个列表,如表1所示。

    表1

    设备
    经度x
    纬度y
    距自身距离(米)
    发送节点BS1
    x1
    y1
    R1
    发送节点BS2
    x2
    y2
    R2
    发送节点BS3
    x3
    y3
    R3

    则可根据发送节点的具体位置信息及距离接收节点的距离信息形成如图2所示的
    三边图。如图2所示,BS1、BS2、BS3是三个发送节点,在VANET可以是邻近车辆或邻近路边单
    元,发送节点与处于GNSS盲区的接收节点(即,本车)之间的距离分别为R1、R2、R3,由此可知
    接收节点位于半径为Ri、圆心为发送节点的圆周上。假设接收节点的二维坐标为(x0,y0),所
    属圆的圆心为(xi,yi),则满足:

    (xi-x0)2+(yi-y0)2=Ri2 (6)

    当存在多个发送节点时,则以发送节点的实际位置为圆心,以其与接收节点间的
    距离为半径,可以得出半径大小不同的圆。理论上来讲,所有圆周的交点应该重合与一点,
    因此重合的点即为本车自身的位置。

    基于上述三边测量定位算法的原理可以得知,只要能够获知三个发送节点的位置
    信息,以及接收节点与各个发送节点之间的距离信息,就可以确定出该接收节点的位置信
    息。因此,在步骤101时,要获取至少三个邻近参考点的接收信号强度信息及位置信息,才能
    完成后续的本车定位,即,M≥3。

    综上所述,在上述技术方案中,通过获取多个邻近参考点的接收信号强度信息,能
    够确定出本车与这些邻近参考点之间的相对位置信息,并结合这些邻近参考点自身的绝对
    位置,可以定位出本车实际的绝对位置。这样,当本车进入GNSS信号覆盖盲区时,仍能够协
    同其他的邻近参考点来辅助确定自身位置,并且定位精度高、误差小,能够满足车辆处于
    GNSS盲区时碰撞预警等应用的需求。

    作为一种可选的实施方式,可以使用全部N个位置可知的邻近参考点的接收信号
    强度信息和位置信息,来确定本车的实际位置信息。在这种情况下,N=M。作为另一种可选
    的实施方式中,可以使用全部N个位置可知的邻近参考点中的一部分邻近参考点的接收信
    号强度信息和位置信息,来确定本车的实际位置信息。在这种情况下,N>M。这样,可以减少
    计算量,提高定位效率。在该实施方式中的一种实现方式中,可以基于接收信号强度的大
    小,来决定选用哪些邻近参考点的RSSI和位置信息。这是因为,RSSI越大表示该邻近参考点
    距离本车越近,反之,RSSI越小表示该邻近参考点距离本车越远。由于距离越远,传输干扰
    越大,数据误差可能就越大。因此,选择距离本车较近的邻近参考点的位置信息来协助本车
    定位,可以进一步提升定位结果的准确性。因此,在步骤101中获取到的M个邻近参考点的接
    收信号强度信息,是在N个位置可知的邻近参考点中,按照接收信号强度信息从大到小的顺
    序,排名在前M个的邻近参考点的接收信号强度信息。

    如上所述,理论上来讲,每三个发送设备可以得出一个接收节点的位置信息。在
    VANET环境下,作为发送节点的车辆或路边单元比较多。设备越多,确定的接收节点的位置
    信息越多,且这些位置应该完全重合。但实际情况中,由于受环境的限制,且由于实验仪器
    的误差等,得到的这些接收节点位置的点并不会完全重合,实际的位置信息将在某个范围
    内,并且呈现正态分布的状态,所描绘的期望点分布如图3所示,符合正态分布的期望点数
    据例如如表2所示:

    表2


    经度(x)
    纬度(y)
    点A
    100.25882
    25.597511
    点B
    100.25891
    25.597502
    点C
    100.25889
    25.597516
    点D
    100.25803
    25.597502

    针对这一情况,本公开提供一种优化机制,以解决在得到多个不同的接收节点位
    置点的情况下,如何确定接收节点的实际位置的问题。

    具体地,上述步骤103可以包括:

    首先,根据本车与M个邻近参考点中的任意三个邻近参考点之间的距离,以及所述
    任意三个邻近参考点的位置信息,确定本车的多个潜在位置信息。

    也就是说,当确定出本车与至少四个邻近参考点之间的距离时,可以首先根据其
    中的三个邻近参考点与本车之间的距离,以及这三个邻近参考点的位置信息,按照如上的
    三边测量定位算法,计算出一个本车的位置信息,该位置信息作为一个潜在位置信息。接下
    来,再重新选取三个邻近参考点,其中,再次选取的三个邻近参考点与历史选取的三个邻近
    参考点不完全相同,根据重新选取的三个邻近参考点与本车之间的距离,以及这三个邻近
    参考点的位置信息,按照如上的三边测量定位算法,再计算出一个本车的位置信息,该位置
    信息作为另一个潜在位置信息。上述过程重复进行,直到获取到预定数量(该数量≥2)的潜
    在位置信息为止。

    接下来,根据本车的多个潜在位置信息,确定本车的实际位置信息。

    示例地,可以构建本车位置分布概率方程,如以下所示:


    其中x,y分别为经度、纬度,μ1,μ2,σ1,σ2,ρ为分布参数,其中,μ1表示经度平均值,μ2
    表示纬度平均值,σ1表示经度方差,σ2表示纬度方差,ρ为x与y的相关系数,并且,|ρ|<1。

    之后,根据本车的多个潜在位置信息,利用二维高斯迭代法,求取本车位置分布概
    率方程的最优解,并将该最优解确定为是本车的实际位置信息。

    通过这一实施方式,能够进一步提高定位结果的精度,误差范围可控制在很小的
    范围内,可以满足车辆处于GNSS盲区时碰撞预警等应用的需求。

    图4是根据本公开的另一示例性实施例示出的车辆定位方法的流程图。如图4所
    示,该方法还可以包括:

    在步骤104中,向与本车通信的邻近参考点发送本车的实际位置信息,以便于在本
    车进入GNSS信号覆盖盲区时,该邻近参考点也能够获知到本车位置信息,并基于本车位置
    信息进行碰撞预警等操作。

    图5是根据本公开的一示例性实施例示出的车辆定位装置500的结构框图。如图5
    所示,该装置可以包括:获取???01,用于在本车与N个位置可知的邻近参考点进行通信
    时,获取M个邻近参考点的接收信号强度信息和位置信息,其中,N和M为自然数,并且,3≤M
    ≤N;距离确定???02,用于根据所述接收信号强度信息,确定所述本车与所述M个邻近参
    考点中的各个邻近参考点之间的距离;定位???03,用于根据所述本车与所述M个邻近参
    考点中的各个邻近参考点之间的距离、以及所述M个邻近参考点的位置信息,确定本车的实
    际位置信息。

    通过获取多个邻近参考点的接收信号强度信息,能够确定出本车与这些邻近参考
    点之间的相对位置信息,并结合这些邻近参考点自身的绝对位置,可以定位出本车实际的
    绝对位置。这样,当本车进入GNSS信号覆盖盲区时,仍能够协同其他的邻近参考点来辅助确
    定自身位置,并且定位精度高、误差小,能够满足车辆处于GNSS盲区时碰撞预警等应用的需
    求。

    可选地,所述距离确定???02可以用于通过上述公式(5)来确定所述本车与所述
    M个邻近参考点中的各个邻近参考点之间的距离。

    可选地,M≥4;以及,所述定位???03可以包括:第一确定子???,用于根据本车
    与所述M个邻近参考点中的任意三个邻近参考点之间的距离,以及所述任意三个邻近参考
    点的位置信息,确定本车的多个潜在位置信息;第二确定子???,用于根据所述本车的多个
    潜在位置信息,确定所述本车的实际位置信息。

    可选地,所述第二确定子??榭梢园ǎ悍匠坦菇ㄗ幽??,用于构建本车位置分布
    概率方程;求解子???,用于根据所述本车的多个潜在位置信息,利用二维高斯迭代法,求
    取所述本车位置分布概率方程的最优解,并将所述最优解确定为是所述本车的实际位置信
    息。

    图6是根据本公开的另一示例性实施例示出的车辆定位装置500的结构框图。如图
    6所示,该装置500还可以包括:发送???04,用于向与所述本车通信的邻近参考点发送所
    述本车的实际位置信息。

    关于上述实施例中的装置,其中各个??橹葱胁僮鞯木咛宸绞揭丫谟泄馗梅椒?br />的实施例中进行了详细描述,此处将不做详细阐述说明。

    以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实
    施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简
    单变型,这些简单变型均属于本公开的?;し段?。

    另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛
    盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可
    能的组合方式不再另行说明。

    此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本
    公开的思想,其同样应当视为本公开所公开的内容。

    关于本文
    本文标题:车辆定位方法及装置.pdf
    链接地址://www.4mum.com.cn/p-6001413.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 新疆时时走势图大全 2019中国女篮vs西班牙 福彩3d包转不赔组合 新时时彩 幸运飞艇前二复式APP 双色球今晚开奖直播 北京塞车开奖结果 彩专家100585时时彩 江苏快三计划软件手机版 北京时时点玩法 时时彩易位稳赚技巧lm0 手机福彩投注 买福彩3d稳赚不赔的绝密方法 北京pk10定位稳赚技巧 重庆时时开奖大小 购彩网一分快三的计划软件