• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 34
    • 下载费用:30 金币  

    最新重庆时时彩: 基于可逆信息隐藏的钝角预测方法、系统.pdf

    关 键 词:
    基于 可逆 信息 隐藏 钝角 预测 方法 系统
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201611118246.4

    申请日:

    2016.12.07

    公开号:

    CN106803228A

    公开日:

    2017.06.06

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G06T 1/00申请日:20161207|||公开
    IPC分类号: G06T1/00 主分类号: G06T1/00
    申请人: 华北电力大学(保定)
    发明人: 项洪印; 苑津莎; 侯思祖; 张冉
    地址: 071000 河北省保定市永华北大街619号
    优先权:
    专利代理机构: 北京酷爱智慧知识产权代理有限公司 11514 代理人: 安娜
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611118246.4

    授权公告号:

    |||

    法律状态公告日:

    2017.06.30|||2017.06.06

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明属于数据隐藏技术领域,提供了一种基于可逆信息隐藏的钝角预测方法、系统,该方法包括获取载体图像和辅助信息,辅助信息包括水印信息和位置图,进行预处理,根据载体图像,确定扫描分块的尺寸和图像粗糙度,根据最大预测角度、参照像素数量和目标像素的位置,对目标像素进行预测,获取目标像素的预测误差,根据目标像素的预测误差和辅助信息的存储位置,将水印信息嵌入载体图像,形成载密图像,识别载密图像中的辅助信息,从载密图像中提取水印信息,对已修改像素灰度值的像素进行恢复,还原载体图像。本发明基于可逆信息隐藏的钝角预测方法、系统,能够提高可逆信息隐藏技术的嵌入容量和峰值信噪比,增强预测性能。

    权利要求书

    1.一种基于可逆信息隐藏的钝角预测方法,其特征在于,包括:
    信息获取步骤:获取载体图像和辅助信息,所述辅助信息包括水印信息和位置图;
    预处理步骤:对所述载体图像中的像素灰度值进行修改,记录修改位置,保存至所述位
    置图,并压缩所述位置图;
    类型选择步骤:根据所述载体图像,确定扫描分块的尺寸和图像粗糙度;
    根据所述水印信息,确定预测扇形的扇径;
    根据所述扇径和所述图像粗糙度,选定最大预测角度、参照像素数量和目标像素的位
    置;
    信息嵌入步骤:根据所述辅助信息的最大长度,确定所述辅助信息的存储位置;
    根据所述最大预测角度、所述参照像素数量和所述目标像素的位置,对所述目标像素
    进行预测,获取所述目标像素的预测误差;
    根据所述目标像素的预测误差和所述辅助信息的存储位置,将所述水印信息嵌入所述
    载体图像,形成载密图像;
    信息提取步骤:识别所述载密图像中的所述辅助信息,并解压所述位置图;
    根据所述目标像素的预测误差,从所述载密图像中提取所述水印信息;
    根据所述解压后的位置图,对已修改像素灰度值的像素进行恢复,还原所述载体图像。
    2.根据权利要求1所述基于可逆信息隐藏的钝角预测方法,其特征在于,根据所述水印
    信息,确定预测扇形的扇径,具体包括:
    对于高负载量的水印信息,则确定所述预测扇形的扇径为第一扇径;
    对于中负载量的水印信息,则确定所述预测扇形的扇径为第二扇径;
    对于低负载量的水印信息,则确定所述预测扇形的扇径为第三扇径,且所述第一扇径
    小于所述第二扇径,所述第二扇径小于所述第三扇径;
    根据所述扇径和所述图像粗糙度,选定最大预测角度、参照像素数量和目标像素的位
    置,具体包括:
    将所述图像粗糙度与预获取的最大粗糙度阈值比较:
    若所述图像粗糙度大于等于所述最大粗糙度阈值,则生成处理错误提示信息,若所述
    图像粗糙度小于所述最大粗糙度阈值,则:
    当所述扇径为所述第一扇径,则选定所述参照像素数量为3~4个,
    当所述扇径为所述第二扇径,则选定所述参照像素数量为8~10个,
    当所述扇径为所述第三扇径,则选定所述参照像素数量为7~15个;
    根据选定的参照像素数量,设置所述目标像素的虚拟位置和上下文像素矢量;
    遍历所述目标像素的虚拟位置,根据所述上下文像素矢量,获取性能遍历结果;
    根据所述性能遍历结果和预获取的参数比重信息,设置所述最大预测角度和所述目标
    像素的位置。
    3.根据权利要求1或2所述基于可逆信息隐藏的钝角预测方法,其特征在于,根据所述
    最大预测角度、所述参照像素数量和所述目标像素的位置,对所述目标像素进行预测,获取
    所述目标像素的预测误差,具体包括:
    根据所述最大预测角度和所述参照像素数量,确定上下文像素矢量;
    将所述上下文像素矢量中上下文像素的像素灰度值进行排序,获取最小像素灰度值和
    最大像素灰度值;
    根据所述最小像素灰度值和所述最大像素灰度值,通过如下公式,对所述目标像素进
    行预测,获取所述目标像素的预测值,

    其中,为第i行、第j列的目标像素的预测值,xi,j为第i行、第j列的目标像素的真实
    值,min(C)为所述上下文像素矢量中最小像素灰度值,max(C)为所述上下文像素矢量中最
    大像素灰度值,VC为所述上下文像素矢量中像素灰度值;
    根据所述目标像素的预测值和真实值,通过如下公式,获取所述目标像素的预测误差,
    <mrow> <mi>p</mi> <mi>e</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>p</mi> </msubsup> </mrow>
    其中,pe为所述目标像素的预测误差,为第i行、第j列的目标像素的预测值,xi,j为第
    i行、第j列的目标像素的真实值。
    4.根据权利要求3所述基于可逆信息隐藏的钝角预测方法,其特征在于,根据所述目标
    像素的预测误差和所述辅助信息的存储位置,将所述水印信息嵌入所述载体图像,具体包
    括:
    根据所述目标像素的预测误差,通过如下公式,进行平移和扩展,获取平移和扩展后的
    预测误差,

    其中,PE为所述平移和扩展后的预测误差,pe为所述目标像素的预测误差,xi,j为第i
    行、第j列的目标像素的真实值,min(C)为所述上下文像素矢量中最小像素灰度值,max(C)
    为所述上下文像素矢量中最大像素灰度值,VC为所述上下文像素矢量中像素灰度值;
    根据辅助信息的存储位置,以及所述平移和扩展后的预测误差,将所述水印信息嵌入
    所述载体图像。
    5.根据权利要求1所述基于可逆信息隐藏的钝角预测方法,其特征在于,在所述预处理
    步骤之后,类型选择步骤之前,该方法还包括参数比重信息获取步骤:根据所述载体图像,
    确定扫描分块的尺寸、目标像素的模拟位置和最大模拟预测角度;
    根据所述扫描分块的尺寸和所述水印信息,确定预测扇径;
    根据所述预测扇径、所述目标像素的模拟位置和所述最大模拟预测角度,确定第一上
    下文像素矢量;
    根据所述第一上下文像素矢量、所述预测扇径和所述目标像素的模拟位置,对所述目
    标像素进行预测,获取所述目标像素的模拟预测误差;
    根据所述目标像素的模拟预测误差,进行平移和扩展,获取嵌入容量和峰值信噪比;
    根据所述嵌入容量和所述峰值信噪比,获取所述参数比重信息。
    6.根据权利要求5所述基于可逆信息隐藏的钝角预测方法,其特征在于,在获取所述目
    标像素的模拟预测误差之后,进行平移和扩展之前,该方法还包括:
    增大预测扇径;
    将增大的预测扇径与预设的最大预测扇径比较:
    若所述增大的预测扇径大于等于所述最大预测扇径,则根据所述目标像素的模拟预测
    误差,进行平移和扩展,获取嵌入容量和峰值信噪比;
    若所述增大的预测扇径小于所述最大预测扇径,则:
    根据所述增大的预测扇径、所述目标像素的模拟位置和所述最大模拟预测角度,确定
    第二上下文像素矢量;
    根据所述第二上下文像素矢量、增大的预测扇径和目标像素的模拟位置,对目标像素
    进行预测,获取目标像素的模拟预测误差。
    7.一种基于可逆信息隐藏的钝角预测系统,其特征在于,包括:
    信息获取子系统:用于获取载体图像和辅助信息,所述辅助信息包括水印信息和位置
    图;
    预处理子系统:用于对所述载体图像中的像素灰度值进行修改,记录修改位置,保存至
    所述位置图,并压缩所述位置图;
    类型选择子系统:用于根据所述载体图像,确定扫描分块的尺寸和图像粗糙度;根据所
    述水印信息,确定预测扇形的扇径;根据所述扇径和所述图像粗糙度,选定最大预测角度、
    参照像素数量和目标像素的位置;
    信息嵌入子系统:用于根据所述辅助信息的最大长度,确定所述辅助信息的存储位置;
    根据所述最大预测角度、所述参照像素数量和所述目标像素的位置,对所述目标像素进行
    预测,获取所述目标像素的预测误差;根据所述目标像素的预测误差和所述辅助信息的存
    储位置,将所述水印信息嵌入所述载体图像,形成载密图像;
    信息提取子系统:用于识别所述载密图像中的所述辅助信息,并解压所述位置图;根据
    所述目标像素的预测误差,从所述载密图像中提取所述水印信息;根据所述解压后的位置
    图,对已修改像素灰度值的像素进行恢复,还原所述载体图像。
    8.根据权利要求7所述基于可逆信息隐藏的钝角预测系统,其特征在于,所述类型选择
    子系统在根据所述水印信息,确定预测扇形的扇径时,具体用于:对于高负载量的水印信
    息,则确定所述预测扇形的扇径为第一扇径;对于中负载量的水印信息,则确定所述预测扇
    形的扇径为第二扇径;对于低负载量的水印信息,则确定所述预测扇形的扇径为第三扇径,
    且所述第一扇径小于所述第二扇径,所述第二扇径小于所述第三扇径;
    所述类型选择子系统在根据所述扇径和所述图像粗糙度,选定最大预测角度、参照像
    素数量和目标像素的位置时,具体用于:将所述图像粗糙度与预获取的最大粗糙度阈值比
    较:若所述图像粗糙度大于等于所述最大粗糙度阈值,则生成处理错误提示信息,若所述图
    像粗糙度小于所述最大粗糙度阈值,则当所述扇径为所述第一扇径,则选定所述参照像素
    数量为3~4个,当所述扇径为所述第二扇径,则选定所述参照像素数量为8~10个,当所述
    扇径为所述第三扇径,则选定所述参照像素数量为7~15个;根据选定的参照像素数量,设
    置所述目标像素的虚拟位置和上下文像素矢量;遍历所述目标像素的虚拟位置,根据所述
    上下文像素矢量,获取性能遍历结果;根据所述性能遍历结果和预获取的参数比重信息,设
    置所述最大预测角度和所述目标像素的位置。
    9.根据权利要求7或8所述基于可逆信息隐藏的钝角预测系统,其特征在于,所述信息
    嵌入子系统在根据所述最大预测角度、所述参照像素数量和所述目标像素的位置,对所述
    目标像素进行预测,获取所述目标像素的预测误差时,具体用于:根据所述最大预测角度和
    所述参照像素数量,确定上下文像素矢量;将所述上下文像素矢量中上下文像素的像素灰
    度值进行排序,获取最小像素灰度值和最大像素灰度值;根据所述最小像素灰度值和所述
    最大像素灰度值,通过如下公式,对所述目标像素进行预测,获取所述目标像素的预测值,

    其中,为第i行、第j列的目标像素的预测值,xi,j为第i行、第j列的目标像素的真实
    值,min(C)为所述上下文像素矢量中最小像素灰度值,max(C)为所述上下文像素矢量中最
    大像素灰度值,VC为所述上下文像素矢量中像素灰度值;根据所述目标像素的预测值和真
    实值,通过如下公式,获取所述目标像素的预测误差,
    <mrow> <mi>p</mi> <mi>e</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>p</mi> </msubsup> </mrow>
    其中,pe为所述目标像素的预测误差,为第i行、第j列的目标像素的预测值,xi,j为第
    i行、第j列的目标像素的真实值。
    10.根据权利要求9所述基于可逆信息隐藏的钝角预测系统,其特征在于,所述信息嵌
    入子系统在根据所述目标像素的预测误差和所述辅助信息的存储位置,将所述水印信息嵌
    入所述载体图像时,具体用于:根据所述目标像素的预测误差,通过如下公式,进行平移和
    扩展,获取平移和扩展后的预测误差,

    其中,PE为所述平移和扩展后的预测误差,pe为所述目标像素的预测误差,xi,j为第i
    行、第j列的目标像素的真实值,min(C)为所述上下文像素矢量中最小像素灰度值,max(C)
    为所述上下文像素矢量中最大像素灰度值,VC为所述上下文像素矢量中像素灰度值;根据
    辅助信息的存储位置,以及所述平移和扩展后的预测误差,将所述水印信息嵌入所述载体
    图像。

    说明书

    基于可逆信息隐藏的钝角预测方法、系统

    技术领域

    本发明涉及数据隐藏技术领域,具体涉及一种基于可逆信息隐藏的钝角预测方
    法、系统。

    背景技术

    随着计算机和网络技术的发展,越来越多的图像信息在网络中传输,方便用户日
    常应用。但是,大多数基于可逆信息隐藏技术无法得到良好的嵌入容量和嵌入质量,尤其是
    对于中高负载、图像粗糙程度较大的载体图像,现有的隐藏技术的峰值信噪比较低,预测性
    能较差。

    如何提高可逆信息隐藏技术的嵌入容量和峰值信噪比,增强预测性能,是本领域
    技术人员亟需解决的问题。

    发明内容

    针对现有技术中的缺陷,本发明提供一种基于可逆信息隐藏的钝角预测方法、系
    统,能够提高可逆信息隐藏技术的嵌入容量和峰值信噪比,增强预测性能。

    第一方面,本发明提供一种基于可逆信息隐藏的钝角预测方法,该方法包括:

    信息获取步骤:获取载体图像和辅助信息,辅助信息包括水印信息和位置图;

    预处理步骤:对载体图像中的像素灰度值进行修改,记录修改位置,保存至位置
    图,并压缩位置图;

    类型选择步骤:根据载体图像,确定扫描分块的尺寸和图像粗糙度;

    根据水印信息,确定预测扇形的扇径;

    根据扇径和图像粗糙度,选定最大预测角度、参照像素数量和目标像素的位置;

    信息嵌入步骤:根据辅助信息的最大长度,确定辅助信息的存储位置;

    根据最大预测角度、参照像素数量和目标像素的位置,对目标像素进行预测,获取
    目标像素的预测误差;

    根据目标像素的预测误差和辅助信息的存储位置,将水印信息嵌入载体图像,形
    成载密图像;

    信息提取步骤:识别载密图像中的辅助信息,并解压位置图;

    根据目标像素的预测误差,从载密图像中提取水印信息;

    根据解压后的位置图,对已修改像素灰度值的像素进行恢复,还原载体图像。

    进一步地,根据水印信息,确定预测扇形的扇径,具体包括:

    对于高负载量的水印信息,则确定预测扇形的扇径为第一扇径;

    对于中负载量的水印信息,则确定预测扇形的扇径为第二扇径;

    对于低负载量的水印信息,则确定预测扇形的扇径为第三扇径,且第一扇径小于
    第二扇径,第二扇径小于第三扇径;

    根据扇径和图像粗糙度,选定最大预测角度、参照像素数量和目标像素的位置,具
    体包括:将图像粗糙度与预获取的最大粗糙度阈值比较:

    若图像粗糙度大于等于最大粗糙度阈值,则生成处理错误提示信息,若图像粗糙
    度小于最大粗糙度阈值,则:

    当扇径为第一扇径,则选定参照像素数量为3~4个,

    当扇径为第二扇径,则选定参照像素数量为8~10个,

    当扇径为第三扇径,则选定参照像素数量为7~15个;

    根据选定的参照像素数量,设置目标像素的虚拟位置和上下文像素矢量;

    遍历目标像素的虚拟位置,根据上下文像素矢量,获取性能遍历结果;

    根据性能遍历结果和预获取的参数比重信息,设置最大预测角度和目标像素的位
    置。

    进一步地,根据最大预测角度、参照像素数量和目标像素的位置,对目标像素进行
    预测,获取目标像素的预测误差,具体包括:

    根据最大预测角度和参照像素数量,确定上下文像素矢量;

    将上下文像素矢量中上下文像素的像素灰度值进行排序,获取最小像素灰度值和
    最大像素灰度值;

    根据最小像素灰度值和最大像素灰度值,通过如下公式,对目标像素进行预测,获
    取目标像素的预测值,


    其中,为第i行、第j列的目标像素的预测值,xi,j为第i行、第j列的目标像素的
    真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像素矢量中最大像
    素灰度值,VC为上下文像素矢量中像素灰度值;

    根据目标像素的预测值和真实值,通过如下公式,获取目标像素的预测误差,


    其中,pe为目标像素的预测误差,为第i行、第j列的目标像素的预测值,xi,j为
    第i行、第j列的目标像素的真实值。

    进一步地,根据目标像素的预测误差和辅助信息的存储位置,将水印信息嵌入载
    体图像,具体包括:

    根据目标像素的预测误差,通过如下公式,进行平移和扩展,获取平移和扩展后的
    预测误差,


    其中,PE为平移和扩展后的预测误差,pe为目标像素的预测误差,xi,j为第i行、第j
    列的目标像素的真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像
    素矢量中最大像素灰度值,VC为上下文像素矢量中像素灰度值;

    根据辅助信息的存储位置,以及平移和扩展后的预测误差,将水印信息嵌入载体
    图像。

    基于上述任意基于可逆信息隐藏的钝角预测方法实施例,进一步地,在预处理步
    骤之后,类型选择步骤之前,该方法还包括参数比重信息获取步骤:根据载体图像,确定扫
    描分块的尺寸、目标像素的模拟位置和最大模拟预测角度;

    根据扫描分块的尺寸和水印信息,确定预测扇径;

    根据预测扇径、目标像素的模拟位置和最大模拟预测角度,确定第一上下文像素
    矢量;

    根据第一上下文像素矢量、预测扇径和目标像素的模拟位置,对目标像素进行预
    测,获取目标像素的模拟预测误差;

    根据目标像素的模拟预测误差,进行平移和扩展,获取嵌入容量和峰值信噪比;

    根据嵌入容量和峰值信噪比,获取参数比重信息。

    进一步地,在获取目标像素的模拟预测误差之后,进行平移和扩展之前,该方法还
    包括:增大预测扇径;

    将增大的预测扇径与预设的最大预测扇径比较:

    若增大的预测扇径大于等于最大预测扇径,则根据目标像素的模拟预测误差,进
    行平移和扩展,获取嵌入容量和峰值信噪比;

    若增大的预测扇径小于最大预测扇径,则:

    根据增大的预测扇径、目标像素的模拟位置和最大模拟预测角度,确定第二上下
    文像素矢量;

    根据第二上下文像素矢量、增大的预测扇径和目标像素的模拟位置,对目标像素
    进行预测,获取目标像素的模拟预测误差。

    第二方面,本发明提供一种基于可逆信息隐藏的钝角预测系统,该系统包括信息
    获取子系统、预处理子系统、类型选择子系统、信息嵌入子系统和信息提取子系统,信息获
    取子系统用于获取载体图像和辅助信息,辅助信息包括水印信息和位置图;预处理子系统
    用于对载体图像中的像素灰度值进行修改,记录修改位置,保存至位置图,并压缩位置图;
    类型选择子系统用于根据载体图像,确定扫描分块的尺寸和图像粗糙度;根据水印信息,确
    定预测扇形的扇径;根据扇径和图像粗糙度,选定最大预测角度、参照像素数量和目标像素
    的位置;信息嵌入子系统用于根据辅助信息的最大长度,确定辅助信息的存储位置;根据最
    大预测角度、参照像素数量和目标像素的位置,对目标像素进行预测,获取目标像素的预测
    误差;根据目标像素的预测误差和辅助信息的存储位置,将水印信息嵌入载体图像,形成载
    密图像;信息提取子系统用于识别载密图像中的辅助信息,并解压位置图;根据目标像素的
    预测误差,从载密图像中提取水印信息;根据解压后的位置图,对已修改像素灰度值的像素
    进行恢复,还原载体图像。

    进一步地,类型选择子系统在根据水印信息,确定预测扇形的扇径时,具体用于:
    对于高负载量的水印信息,则确定预测扇形的扇径为第一扇径;对于中负载量的水印信息,
    则确定预测扇形的扇径为第二扇径;对于低负载量的水印信息,则确定预测扇形的扇径为
    第三扇径,且第一扇径小于第二扇径,第二扇径小于第三扇径;

    类型选择子系统在根据扇径和图像粗糙度,选定最大预测角度、参照像素数量和
    目标像素的位置时,具体用于:将图像粗糙度与预获取的最大粗糙度阈值比较:若图像粗糙
    度大于等于最大粗糙度阈值,则生成处理错误提示信息,若图像粗糙度小于最大粗糙度阈
    值,则当扇径为第一扇径,则选定参照像素数量为3~4个,当扇径为第二扇径,则选定参照
    像素数量为8~10个,当扇径为第三扇径,则选定参照像素数量为7~15个;根据选定的参照
    像素数量,设置目标像素的虚拟位置和上下文像素矢量;遍历目标像素的虚拟位置,根据上
    下文像素矢量,获取性能遍历结果;根据性能遍历结果和预获取的参数比重信息,设置最大
    预测角度和目标像素的位置。

    进一步地,信息嵌入子系统在根据最大预测角度、参照像素数量和目标像素的位
    置,对目标像素进行预测,获取目标像素的预测误差时,具体用于:根据最大预测角度和参
    照像素数量,确定上下文像素矢量;将上下文像素矢量中上下文像素的像素灰度值进行排
    序,获取最小像素灰度值和最大像素灰度值;根据最小像素灰度值和最大像素灰度值,通过
    如下公式,对目标像素进行预测,获取目标像素的预测值,


    其中,为第i行、第j列的目标像素的预测值,xi,j为第i行、第j列的目标像素的
    真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像素矢量中最大像
    素灰度值,VC为上下文像素矢量中像素灰度值;根据目标像素的预测值和真实值,通过如下
    公式,获取目标像素的预测误差,


    其中,pe为目标像素的预测误差,为第i行、第j列的目标像素的预测值,xi,j为
    第i行、第j列的目标像素的真实值。

    进一步地,信息嵌入子系统在根据目标像素的预测误差和辅助信息的存储位置,
    将水印信息嵌入载体图像时,具体用于:根据目标像素的预测误差,通过如下公式,进行平
    移和扩展,获取平移和扩展后的预测误差,


    其中,PE为平移和扩展后的预测误差,pe为目标像素的预测误差,xi,j为第i行、第j
    列的目标像素的真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像
    素矢量中最大像素灰度值,VC为上下文像素矢量中像素灰度值;根据辅助信息的存储位置,
    以及平移和扩展后的预测误差,将水印信息嵌入载体图像。

    由上述技术方案可知,本发明基于可逆信息隐藏的钝角预测方法、系统,能够对像
    素灰度值进行修改,有效防止后续信息处理过程中像素溢出,避免载密图像显示异常,有助
    于提高可逆性。该方法通过设置钝角预测的最优参数,如最大预测角度、参照像素数量和目
    标像素的位置,增强参照像素对目标像素的包裹性,有助于提高预测精度,再将水印信息嵌
    入载体图像,达到最佳性能,即最大化的嵌入容量和最高的峰值信噪比,实现水印信息隐
    藏。同时,该方法还能够从载密图像中提取水印信息,还原载体图图像,以保证可逆性。

    因此,本发明基于可逆信息隐藏的钝角预测方法、系统,能够提高嵌入容量和峰值
    信噪比,增强预测性能。

    附图说明

    为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体
    实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件
    或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际比例绘制。

    图1示出了本发明所提供的第一种基于可逆信息隐藏的钝角预测方法流程图;

    图2示出了本发明所提供的一种像素扫描顺序的示意图;

    图3示出了本发明所提供的一种RAP型像素分布示意图;

    图4示出了本发明所提供的一种OAP-I型像素分布示意图;

    图5示出了本发明所提供的一种OAP-II型像素分布示意图;

    图6~(a)为Lena图像的RAP型第一预测误差直方图;

    图6~(b)为Lena图像的RAP型第二预测误差直方图;

    图6~(c)为Lena图像的RAP型第三预测误差直方图;

    图7~(a)为Lena图像的OAP-I型第一预测误差直方图;

    图7~(b)为Lena图像的OAP-I型第二预测误差直方图;

    图7~(c)为Lena图像的OAP-I型第三预测误差直方图;

    图8~(a)为Lena图像的OAP-II型第一预测误差直方图;

    图8~(b)为Lena图像的OAP-II型第二预测误差直方图;

    图8~(c)为Lena图像的OAP-II型第三预测误差直方图;

    图9示出了本发明所提供的第二种基于可逆信息隐藏的钝角预测方法流程图;

    图10示出了本发明所提供的第三种基于可逆信息隐藏的钝角预测方法流程图;

    图11~(a)示出了本发明所提供的测试图像SIPI图像数据集Lena;

    图11~(b)示出了本发明所提供的测试图像SIPI图像数据集Airplane-F16;

    图11~(c)示出了本发明所提供的测试图像SIPI图像数据集Baboon;

    图11~(d)示出了本发明所提供的测试图像SIPI图像数据集Barbara;

    图11~(e)示出了本发明所提供的测试图像SIPI图像数据集Boat;

    图11~(f)示出了本发明所提供的测试图像SIPI图像数据集Peppers;

    图12示出了本发明所提供的不同图像对嵌入容量各权重的变化曲线;

    图13示出了本发明所提供的不同图像对移位率各权重的变化曲线;

    图14~(a)示出了本发明所提供的测试图像Lena的PSNR变化曲线;

    图14~(b)示出了本发明所提供的测试图像Airplane-F16的PSNR变化曲线;

    图14~(c)示出了本发明所提供的测试图像Baboon的PSNR变化曲线;

    图14~(d)示出了本发明所提供的测试图像Barbara的PSNR变化曲线;

    图14~(e)示出了本发明所提供的测试图像Boat的PSNR变化曲线;

    图14~(f)示出了本发明所提供的测试图像Peppers的PSNR变化曲线;

    图15示出了本发明所提供的一种基于可逆信息隐藏的钝角预测系统的结构示意
    图。

    具体实施方式

    下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于
    更加清楚地说明本发明的技术方案,因此只是作为示例,而不能以此来限制本发明的?;?br />范围。需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所
    属领域技术人员所理解的通常意义。

    第一方面,本发明实施例提供一种基于可逆信息隐藏的钝角预测方法,结合图1,
    该方法包括:信息获取步骤S1:获取载体图像和辅助信息,辅助信息包括水印信息和位置
    图,在此,辅助信息用来记录水印信息提取和载体图像恢复所必须的参数,包括压缩位置图
    长度,最大粗糙度阈值,参照像素数量,水印信息净荷最后嵌入位置,同时,也便于头信息的
    提??;

    预处理步骤S2:对载体图像中的像素灰度值进行修改,记录修改位置,保存至位置
    图,并压缩位置图,在此,灰度图像的像素灰度值范围为[0,255],预测排序类算法对像素灰
    度值的最大修改值为1,因此,先将所有0像素灰度值修改为1像素灰度值,将255像素灰度值
    修改为254像素灰度值,并用位置图记录下修改的像素,形式为二值矩阵、二值矢量或者二
    值图像,然后压缩位置图;

    类型选择步骤S3:根据载体图像,确定扫描分块的尺寸和图像粗糙度,在此,为兼
    顾信息嵌入容量和嵌入后图像的保真度,扫描分块不宜过小或过大,最小的扫描分块为2×
    2分块,最大的扫描分块为4×4分块;

    根据水印信息,确定预测扇形的扇径,在此,以目标像素为顶点,以目标像素和参
    照像素的连线为两边的最大夹角的边所组成的图形为预测扇形。预测扇形中的参照像素与
    目标像素的临近程度,称为扇径,记为Rs;

    根据扇径和图像粗糙度,选定最大预测角度、参照像素数量和目标像素的位置,在
    此,结合图2,扫描顺序为从左到右、自上而下逐个扫描像素,xi,j+1为目标像素,该目标像素
    的位置为第i行、第j+1列,其右方、下方和右下方的若干像素均为参照像素或上下文像素,
    具体像素位置和大小可根据情况灵活确定。一般遵循紧邻原则,即优先安排与目标像素最
    近的像素作为上下文像素,不间隔选择。因此,经常使用的参照像素数量一般为2~15个;为
    保证可逆性,在指定大小的扫描分块内,目标像素必须位于参考像素之前。

    信息嵌入步骤S4:根据辅助信息的最大长度,确定辅助信息的存储位置,在此,根
    据辅助信息的最大长度,从载体图像的第一个像素开始,按光栅扫描顺序,提取相同长度像
    素的最低有效位,也称为头信息,利用头信息的位置来存储辅助信息;

    根据最大预测角度、参照像素数量和目标像素的位置,对目标像素进行预测,获取
    目标像素的预测误差;

    根据目标像素的预测误差和辅助信息的存储位置,将水印信息嵌入载体图像,形
    成载密图像,并标记水印信息的嵌入位置,且水印信息的嵌入位置之后即为辅助信息的嵌
    入位置;

    信息提取步骤S5:识别载密图像中的辅助信息,并解压位置图,在此,读取载密图
    像前若干个像素的最低有效位,按照光栅顺序,读取与头信息长度相同的像素的最低有效
    位,获得并识别辅助信息,解压缩预处理的位置图;

    根据目标像素的预测误差,从载密图像中提取水印信息,在此,执行嵌入过程的逆
    过程,即通过如下公式,获得目标像素的预测误差,


    其中,为第i行、第j列的目标像素的预测值,xi,j为第i行、第j列的目标像素的
    真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像素矢量中最大像
    素灰度值,VC为上下文像素矢量中像素灰度值,

    对低于最大粗糙度阈值的局部粗糙度目标像素,计算预测误差,


    其中,pe为目标像素的预测误差,为第i行、第j列的目标像素的预测值,xi,j为
    第i行、第j列的目标像素的真实值,并按照解扩展和解移位策略进行水印信息的提

    取和初步载体图像恢复。

    其中,解扩展和解移位策略如下:



    其中,PE为平移和扩展后的预测误差,pe为目标像素的预测误差;

    根据解压后位置图,对已修改像素灰度值像素进行恢复,还原载体图像,在此,按
    照解压缩后的位置图,恢复预处理修改像素,即将修改过的1像素灰度值恢复为0像素灰度
    值,将修改过的254像素灰度值恢复为255像素灰度值,完成载体图像的最后恢复。

    在此,结合图3、图4或图5,RAP的和参照像素矢量分别为:




    OAP-I的和参照像素矢量分别为:




    OAP-II的和参照像素矢量分别为




    三种预测方法实际预测扇径内的参照像素矢量维数满足为:时,


    时,



    时,



    不同扇径条件下,所需的参照像素位置和数量不同,为了最大化嵌入容量应采用
    不同的扫描分块尺寸,表1给出了不同条件下不同方法的扫描像素分块尺寸。


    表1不同扇径下不同方法的扫描像素分块尺寸

    图6~图8均为预测误差直方图,且0柱的比特用来表示携带水印信息,其他柱数据
    用来表示被移位,横坐标为预测误差,简明起见,只给出了[-3:1:3]误差对应的直方图。由
    图6~图8可知,预测误差为零的比特数最多,在0柱位置嵌入信息可获得最高的嵌入容量,
    扇径越大,可嵌入比特数越少,移位比特数越少,且变化越来越平缓,预测误差的绝对值越
    大,移位比特数量越少。


    表2三种预测方法在三种扇径下的嵌入容量Ncap/D

    由表2可知:RAP的参照像素数量和像素最大预测角度均低于OAP-I和OAP-II,因
    此,前者的嵌入容量明显低于后两种方法。


    表3三种预测方法在三种扇径下的移位率Rsft/D

    由表3可知:RAP的参照像素数量和像素最大预测角度均低于OAP-I和OAP-II,因
    此,前者的移位率明显高于后两种方法,嵌入质量最差。

    由上述技术方案可知,本实施例基于可逆信息隐藏的钝角预测方法,能够对像素
    灰度值进行修改,有效防止后续信息处理过程中像素溢出,避免载密图像显示异常,有助于
    提高可逆性。该方法通过设置钝角预测的最优参数,如最大预测角度、参照像素数量和目标
    像素的位置,增强参照像素对目标像素的包裹性,有助于提高预测精度,再将水印信息嵌入
    载体图像,达到最佳性能,即最大化的嵌入容量和最高的峰值信噪比,实现水印信息隐藏。
    同时,该方法还能够从载密图像中提取水印信息,还原载体图图像,以保证可逆性。

    因此,本实施例基于可逆信息隐藏的钝角预测方法,能够提高嵌入容量和峰值信
    噪比,增强预测性能。

    具体地,本实施例基于可逆信息隐藏的钝角预测方法,在根据水印信息,确定预测
    扇形的扇径时,实现过程如下:

    对于高负载量的水印信息,则确定预测扇形的扇径为第一扇径,记为

    对于中负载量的水印信息,则确定预测扇形的扇径为第二扇径,记为

    对于低负载量的水印信息,则确定预测扇形的扇径为第三扇径,记为且第一
    扇径小于第二扇径,第二扇径小于第三扇径,在此,结合图3、图4或图5,RAP的和
    参照像素矢量分别为:




    OAP-I的和参照像素矢量分别为:




    OAP-II的和参照像素矢量分别为:




    根据扇径和图像粗糙度,选定最大预测角度、参照像素数量和目标像素的位置,具
    体包括:将图像粗糙度与预获取的最大粗糙度阈值比较:

    若图像粗糙度大于等于最大粗糙度阈值,则生成处理错误提示信息,若图像粗糙
    度小于最大粗糙度阈值,则:当扇径为第一扇径,则选定参照像素数量为3~4个,

    当扇径为第二扇径,则选定参照像素数量为8~10个,

    当扇径为第三扇径,则选定参照像素数量为7~15个;

    根据选定的参照像素数量,设置目标像素虚拟位置和上下文像素矢量;

    遍历目标像素的虚拟位置,根据所述上下文像素矢量,获取性能遍历结果;

    根据性能遍历结果和预获取的参数比重信息,设置最大预测角度和目标像素的位
    置。扇径越大,嵌入信息的容量越小,该方法能够结合水印信息的负载量,设定预测扇形的
    扇径,以实现水印信息的有效嵌入。同时,预测方法的性能还和图像内容有关,而信息隐藏
    性能的优劣,直接决定于对目标像素的预测能力,因此,先确定目标像素预测能力,后选择
    相应的预测策略,衡量像素预测能力的方法也十分必要,在此,该方法还能够根据不同的扇
    径,获取性能遍历结果,并结合参数比重信息,以设置最优预测参数,以获取最佳预测性能,
    有助于提高嵌入容量和嵌入质量。

    例如,针对高负载量的水印信息,参数比重信息具体为:最大预测角度影响最大,
    参照像素数量中等,目标像素的位置最小且稍微偏弱。因此,该方法优先选择维数较高的上
    下文像素矢量,再遍历可能的目标像素的虚拟位置,选取可获得最优性能的最大预测角度
    和目标像素位置。针对中等负载量的水印信息,参数比重信息具体为:最大预测角度影响最
    大,参照像素数量最小且非常小,可忽略,目标像素的位置为中等,占有较大比重。因此,该
    方法遍历可能的目标像素虚拟位置即可,选取可获得最优性能的目标像素的位置。针对低
    负载量的水印信息,参数比重信息具体为:最大预测角度影响最大,参照像素数量和目标像
    素的位置,虽然稍小,但仍占有比较大的比重,且相差不大。因此,该方法根据可能的上下文
    像素矢量,遍历可能的目标像素虚拟位置,选取可获得最优性能的预测参数。

    具体地,在根据最大预测角度、参照像素数量和目标像素的位置,对目标像素进行
    预测,获取目标像素的预测误差时,该方法实现过程如下:

    根据最大预测角度和参照像素数量,确定上下文像素矢量;

    将上下文像素矢量中上下文像素的像素灰度值进行排序,获取最小像素灰度值和
    最大像素灰度值;

    根据最小像素灰度值和最大像素灰度值,通过如下公式,对目标像素进行预测,获
    取目标像素的预测值,


    其中,为第i行、第j列的目标像素的预测值,xi,j为第i行、第j列的目标像素的
    真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像素矢量中最大像
    素灰度值,VC为上下文像素矢量中像素灰度值,在此,分两种情况:第一种情况是上下文像
    素矢量中的像素灰度值不相等,即min(C)≠max(C),如果目标像素的实际值比上下文像素
    矢量的最小值还小,那么,将这个最小值作为目标像素的预测值;如果目标像素的实际值比
    上下文像素矢量的最大值还大,那么,将这个最大值作为目标像素的预测值;针对其它情
    况,均表示目标像素不可预测。第二种情况是上下文像素矢量中的像素灰度值相等,即min
    (C)=max(C),如果目标像素的实际值和上下文像素矢量的值都相等,而且都是254,就将
    254作为目标像素的预测值;如果上下文像素矢量的值都相等为VC,而且,目标像素的实际
    值小于或者等于VC,就将VC作为目标像素的预测值;针对其它情况,均表示目标像素不可预
    测。

    根据目标像素的预测值和真实值,通过如下公式,获取目标像素的预测误差,


    其中,pe为目标像素的预测误差,为第i行、第j列的目标像素的预测值,xi,j为
    第i行、第j列的目标像素的真实值。在此,该方法能够结合最大预测角度、参照像素数量和
    目标像素的位置,对目标像素进行预测,有助于提高目标像素预测误差的准确性,且为水印
    信息的嵌入提供有效信息支持。

    具体地,在根据目标像素的预测误差和辅助信息的存储位置,将水印信息嵌入载
    体图像时,该方法的实现过程如下:

    根据目标像素的预测误差,通过如下公式,进行平移和扩展,获取平移和扩展后的
    预测误差,


    其中,PE为平移和扩展后的预测误差,pe为目标像素的预测误差,xi,j为第i行、第j
    列的目标像素的真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像
    素矢量中最大像素灰度值,VC为上下文像素矢量中像素灰度值;

    根据辅助信息的存储位置,以及平移和扩展后的预测误差,将水印信息嵌入载体
    图像,并标记水印信息的嵌入位置,将辅助信息嵌入水印信息嵌入位置之后。在此,扩展的
    预测误差用来表征嵌入信息的容量,平移的预测误差用来保证可逆性。

    具体地,在预处理步骤之后,类型选择步骤之前,结合图9或图10,本实施例基于可
    逆信息隐藏的钝角预测方法还包括参数比重信息获取步骤:

    根据载体图像,确定扫描分块的尺寸、目标像素的模拟位置和最大模拟预测角度,
    在此,根据载体图像的分辨率和负载大小,确定合适的扫描分块;

    根据扫描分块的尺寸和水印信息,确定预测扇径;

    根据预测扇径、目标像素模拟位置和最大模拟预测角度,确定第一上下文像素矢
    量;

    根据第一上下文像素矢量、预测扇径和目标像素的模拟位置,对目标像素进行预
    测,获取目标像素的模拟预测误差;

    根据目标像素的模拟预测误差,进行平移和扩展,获取嵌入容量和峰值信噪比,分
    析对嵌入质量的影响;

    根据嵌入容量和峰值信噪比,分析参照像素数量、最大预测角和目标像素位置的
    影响比重,获取参数比重信息。

    并且,在获取目标像素的模拟预测误差之后,进行平移和扩展之前,结合图10,该
    方法还包括:增大预测扇径;

    将增大的预测扇径与预设的最大预测扇径比较:

    若增大的预测扇径大于等于最大预测扇径,则根据目标像素的模拟预测误差,进
    行平移和扩展,获取嵌入容量和峰值信噪比;

    若增大的预测扇径小于最大预测扇径,则:

    根据增大的预测扇径、目标像素的模拟位置和最大模拟预测角度,确定第二上下
    文像素矢量;

    根据第二上下文像素矢量、增大的预测扇径和目标像素的模拟位置,对目标像素
    进行预测,获取目标像素的模拟预测误差。

    为了表示三个因素的影响比重,在此,用如下公式表示:


    其中,H表示预测能力指标,D表示参照像素个数,Θ表示最大预测角度,Γ表示目
    标像素的位置,μ,λ和k分别为相应因素的系数。如果用δ1,δ2和δ3表示各因素的比重,得到如
    下公式:


    其中,有δ1∈[0,1],δ2∈[0,1]和δ3∈[0,1],值越大说明该因子对预测指标的影响
    越大,反之则越小。

    用表2的数据为例来说明嵌入容量的像素预测能力。因容量较大,为便于表达,取H
    =10-4*Ec,由此得到:当时,


    于是,从而,

    类似地,可以得到其它两种扇径下的影响因素比重,用表4表示。


    表4不同扇径下嵌入容量预测能力影响因素比重

    依据表4,我们可以获得如下结论:第一,无论预测扇径大小,三种因素都影响对嵌
    入容量的预测,而且,最大预测角度的比重最大,均超过了0.5;第二,目标像素位置对嵌入
    容量的预测能力随着预测扇径的增大而增加;第三,第一扇径时,目标像素位置对嵌入容量
    的预测能力影响最??;第二、三扇径时,目标像素位置对嵌入容量的预测能力影响均大大超
    过了参考像素数量。

    用表3的数据为例来说明移位率的像素预测能力。移位率数据可直接作为预测能
    力指标,由此得到:

    当时,


    于是,从而,

    类似地,可以得到其它两种扇径下的影响因素比重,用表5表示。


    表5不同扇径下移位率预测能力影响因素比重

    依据表5,我们可以获得如下结论:第一,无论预测扇径大小,三种因素都影响对移
    位率的预测,而且,最大预测角度的比重最大,均超过了0.5。第二,随着预测扇径逐渐增大,
    参照像素数量对移位率预测能力影响呈现先下降后上升的趋势,第一扇径和第三扇径时,
    均在25%左右,而第二扇径时,影响比重则骤降至不到10%。第三,随着预测扇径逐渐增大,
    目标像素位置对移位率预测能力影响呈现先陡然上升后缓慢下降的趋势,第一扇径时,为
    17%,而第二、三扇径时,则均在高于25%。

    针对预测性能的评价,在此,采用嵌入容量和峰值信噪比两个指标进行评价。载体
    图像选择如图11所示的SIPI标准数据集的8位灰度图像,尺寸均为512×512。所用的水印信
    息均为相同的随机比特流,仿真采用Matlab 2013a平台。

    针对满秩预测的嵌入容量性能:



    表6预测的嵌入容量对比



    表7不同预测扇径下对嵌入容量的预测能力影响因素权重对比

    由表6和表7可知,在第三扇径条件下,不同图像所对应的影响因素权重变化比较
    大,这说明这种条件下的权重和图像内容相关。

    结合图12,图12中横轴为影响因素,坐标(1,2,3,4,5,6,7,8,9)一一对应三种扇径
    下的影响因素纵坐标为因素权重。在预测扇径为
    最大时,各影响因素对图像的预测能力因图像内容而不同,最大预测角度的影响变化最大,
    目标像素位置次之,参照像素数量最小。

    Lena,Barbara和Peppers都属于平滑程度一般的图像,具有相同或接近灰度值的
    区域比较多,区域之间的灰度值差别较大,他们的预测影响因素权重变化一致,参照像素数
    量的影响最小且变动范围最小σ∈(0,0.02),最大预测角度影响最大,
    目标位置选择影响居中,二者变动范围较大σ∈(0,1)。

    Baboon和Boat属于粗糙图像,像素灰度变化剧烈,分布复杂,影响因素变化一致,
    参照像素数量影响最小且变动最小σ∈(0,0.01),但和最大预测角度影响
    差别不大,目标像素位置影响最大

    Airplane属于平滑图像,像素点变化缓慢,相同或相近灰度值集中,各因素的权重
    则为参照像素数量影响最小但超越了平滑图像Lena,Barbara和Peppers,最
    大预测角度影响居中低于平滑图像且高于粗糙图像,目标像素位置影响最大
    明显超越了平滑图像。

    由此可知:第一,中低预测扇径下,对嵌入容量的预测能力三种影响因素权重基本
    一致,与图像内容平滑度无关。第二,第一预测扇径下,最大预测角度影响最大,接近60%;
    参照像素数量次之,接近25%;目标像素位置最小,约为17%。第三,第二、三预测扇径下,最
    大预测角度影响最大,接近65%;目标像素位置次之,约为27%;参照像素数量最小,约为
    8%;第四,第三预测扇径下,各因子权重变化不一、大小不一,最大预测角度影变化最大,目
    标像素位置次之,参照像素数量最小。第五,一般平滑图像最大预测角度影响最大,目标像
    素位置次之,参照像素数量最??;粗糙图像和平滑图像的目标像素位置影响最大,最大预测
    角度次之,参照像素数量最??;平滑图像的各影响因素权重处于一般平滑图像和粗糙图像
    之间。

    针对满秩预测的移位率性能:


    表8预测的移位率对比





    表9不同预测扇径下对嵌入容量的预测能力影响因素权重对比

    由表8和表9可知,在第三扇径条件下,不同图像所对应的影响因素权重变化比较
    大,这说明这种条件下的权重和图像内容相关。

    结合图13,图13的坐标意义同图12。不难发现,各影响因子对移位率的预测贡献与
    预测嵌入容量明显不同。在预测扇径为第三扇径时,各影响因素对图像的预测能力因图像
    内容而不同,最大预测角度的影响变化最大,参照像素数量次之,目标像素位置最小。平滑
    图像Airplane和一般平滑图像Lena,Barbara,Peppers的预测影响因素权重变化一致,最大
    预测角度影响最大,参照像素数量的影响次之目标位
    置选择影响最小且变动范围都不大σ∈(0,0.02)。Baboon和Boat属于粗糙
    图像,相对而言,Baboon最为粗糙,Boat粗糙程度略低,介于Baboon和一般图像之间。对
    Baboon图像来讲,目标像素位置影响最大参照像素数量影响次之
    最大预测角度影响最小与粗糙程度类似,Boat图像的因子权重
    也居Baboon和较为平滑图像之间,目标像素位置影响最大最大预测角度影响
    次之参照像素数量影响最小

    由此可知:第一,第一、二扇径下,对移位率的预测能力三种影响因素权重基本一
    致,与图像内容平滑度无关。第二,第一预测扇径下,最大预测角度影响最大,接近60%;参
    照像素数量次之,约为25%;目标像素位置最小,约为17%。第三,第二预测扇径下,最大预
    测角度影响最大,接近65%;目标像素位置次之,约为27%;参照像素数量最小,约为9%。第
    四,第三预测扇径下,各因子权重变化不一、大小不一,最大预测角度影变化最大,参照像素
    数量次之,目标像素位置最小。第五,一般平滑图像和平滑图像最大预测角度影响最大,目
    标像素位置次之,参照像素数量最??;粗糙图像的目标像素位置影响最大,最大预测角度次
    之,参照像素数量最??;低粗糙度图像的各影响因素权重处于一般平滑图像和粗糙图像之
    间,目标像素位置影响最大,参照像素数量次之,最大预测角度影响最小。

    针对最优性能对比:



    表10最优嵌入容量

    Image
    Luo et al.
    Hong
    Li et al.
    RAP
    OAP-I
    OAP-II
    Lena
    57.31
    58.50
    59.86
    60.31
    60.65
    60.72
    Airplane
    57.97
    62.08
    61.61
    63.72
    63.77
    63.73
    Baboon
    51.06
    56.13
    53.50
    54.20
    53.75
    53.72
    Barbara
    55.74
    58.33
    59.98
    59.82
    60.40
    60.35
    Boat
    54.06
    56.63
    58.11
    58.43
    58.47
    58.32
    Peppers
    55.29
    56.10
    56.12
    58.81
    59.13
    59.04
    Average
    55.24
    57.96
    58.20
    59.22
    59.36
    59.31

    表11 10000比特时的PSNR对比

    Image
    Luo et al.
    Hong
    Li et al.
    RAP
    OAP-I
    OAP-II
    Lena
    53.83
    54.90
    56.22
    56.70
    56.73
    56.82
    Airplane
    55.44
    58.59
    58.14
    59.92
    59.97
    59.94
    Barbara
    52.66
    54.94
    54.73
    55.61
    56.62
    56.57
    Boat
    51.19
    52.29
    53.31
    54.20
    54.42
    54.12
    Peppers
    52.21
    52.15
    54.72
    55.03
    55.32
    55.23
    Average
    53.07
    54.57
    55.42
    56.29
    56.61
    56.54

    表12 20000比特时的PSNR对比

    在此,针对该方法和其他几种典型算法的PSNR性能,进行比较,测试图像仍然选择
    图11所示的SIPI图像数据集中的(a)~(f)图像。为保证测试效果的客观性,水印净荷均采
    用相同的相应长度的随机数据流。OAP-I和OAP-II是指按照不同像素分块扫描尺寸,不满足
    OAP条件的使用RAP方法,满足OAP预测条件的使用OAP方法,像素分块尺寸行数和列数大小
    均可能为2,3,4。因此,Qu et al方法,OAP-I和OAP-II扫描分别采用1-15,1-14和1-13个参
    照像素,分别执行15,14和13次,取其性能参数最优值。

    最优嵌入容量如表10所示,对所有测试图像,OAP-I和OAP-II稍低于RAP方法,但这
    三种方法的最大嵌入容量大致相同,均高于PVO预测方法。具体来讲,Lena,Airplane,
    Baboon,Barbara,Boat和Peppers的前三种方法的平均值分别比PVO平均值高出12774,
    12567和12482。

    表11和表12分别列出了净荷负载在10000和20000比特时各测试图像对应的PSNR
    值,其中Baboon图像的最大嵌入容量小于20000比特,因而没有在表12中列出。

    从表11来看,净荷负载为10000比特时,OAP-I方法比RAP方法分别提升了0.34dB,
    0.05dB,-0.45dB,0.58dB,0.04dB和0.32dB,平均提升0.14dB。OAP-II方法略低于OAP-I方
    法,但仍比RAP方法分别提升了0.41dB,0.01dB,-0.48dB,0.53dB,0.11dB和0.23dB,平均提
    升0.09dB。

    从表11来看,净荷负载为20000比特时,OAP-I方法比RAP方法分别提升了0.03dB,
    0.05dB,0.01dB,0.22dB和0.29,平均提升0.32dB。OAP-II方法略低于OAP-I方法,但仍比RAP
    方法分别提升了0.12dB,0.02dB,-0.04dB,-0.08dB和0.20dB,平均提升0.25dB。

    结合图14,整体来看,测试结果有四个特点:第一,不同图像粗糙程度不同,(a)~
    (e)RAP Qu et al方法的曲线在全部负载区域都高于Luo et al.方法和Hong方法,而Li et
    al的PVO曲线在低负载时接近RAP曲线,在中高负载部分则下降较多。Lena,Barbara,Boat和
    Peppers等图像中,Li et al方法在中高负载区高于Hong曲线,低于RAP曲线,Airplane图像
    则低于Hong曲线。而在低负载区,Barbara和Peppers的Li et al方法则高于RAP曲线。OAP-I
    和OAP-II两种方法在中高负载时性能获得较大提升,在低负载时不低于RAP。

    第二,净荷负载均匀变化时,不同方法的变化趋势相同,但剧烈程度不一;低负载
    阶段,各算法曲线下降较为明显,降低速度基本相同;进入中等负载区后,Li et al方法则
    有一个陡降,而后才转为平缓。

    第三,在中高负载时,OAP-I和OAP-II算法优势更为凸显,而且对RAP的提升较为明
    显。Airplane的OAP-I和OAP-II基本重合,Lena的OAP-I稍低于OAP-II,Barbara,Boat和
    Peppers的OAP-I稍高于OAP-II,而Boat更为明显。

    第四,Baboon在测试图像中最为粗糙,各算法区别较大。OAP-I,OAP-II,RAP,Hong
    算法线性保持较好,在低负载段依次降低,但在中高负载段比较接近。Li算法在低负载段为
    最高,进入中高负载区时则降低较快,比RAP算法高,但比OAP-I,OAP-II低。Luo算法最低,但
    变化最为平缓,而且最低值也高于50dB。在此,该方法能够对像素预测能力进行评价,获取
    钝角预测方法的各个参数影响比重,获取参数比重信息,为目标像素的预测提供有效信息
    支持。

    第二方面,本发明实施例提供一种基于可逆信息隐藏的钝角预测系统,结合图15,
    该系统包括信息获取子系统1、预处理子系统2、类型选择子系统3、信息嵌入子系统4和信息
    提取子系统5,信息获取子系统1用于获取载体图像和辅助信息,辅助信息包括水印信息和
    位置图;预处理子系统2用于对载体图像中的像素灰度值进行修改,记录修改位置,保存至
    位置图,并压缩位置图;类型选择子系统3用于根据载体图像,确定扫描分块的尺寸和图像
    粗糙度;根据水印信息,确定预测扇形的扇径;根据扇径和图像粗糙度,选定最大预测角度、
    参照像素数量和目标像素的位置;信息嵌入子系统4用于根据辅助信息的最大长度,确定辅
    助信息的存储位置;根据最大预测角度、参照像素数量和目标像素的位置,对目标像素进行
    预测,获取目标像素的预测误差;根据目标像素的预测误差和辅助信息的存储位置,将水印
    信息嵌入载体图像,形成载密图像;信息提取子系统5用于识别载密图像中的辅助信息,并
    解压位置图;根据目标像素的预测误差,从载密图像中提取水印信息;根据解压后的位置
    图,对已修改像素灰度值的像素进行恢复,还原载体图像。

    由上述技术方案可知,本实施例基于可逆信息隐藏的钝角预测系统,能够对像素
    灰度值进行修改,有效防止后续信息处理过程中像素溢出,避免载密图像显示异常,有助于
    提高可逆性。该系统通过设置钝角预测的最优参数,如最大预测角度、参照像素数量和目标
    像素的位置,增强参照像素对目标像素的包裹性,有助于提高预测精度,再将水印信息嵌入
    载体图像,达到最佳性能,即最大化的嵌入容量和最高的峰值信噪比,实现水印信息隐藏。
    同时,该系统还能够从载密图像中提取水印信息,还原载体图图像,以保证可逆性。

    因此,本实施例基于可逆信息隐藏的钝角预测系统,能够提高嵌入容量和峰值信
    噪比,增强预测性能。

    为了进一步提高本实施例基于可逆信息隐藏的钝角预测系统的准确性,类型选择
    子系统3在根据水印信息,确定预测扇形的扇径时,具体用于:对于高负载量的水印信息,则
    确定预测扇形的扇径为第一扇径;对于中负载量的水印信息,则确定预测扇形的扇径为第
    二扇径;对于低负载量的水印信息,则确定预测扇形的扇径为第三扇径,且第一扇径小于第
    二扇径,第二扇径小于第三扇径。

    类型选择子系统3在根据扇径和图像粗糙度,选定最大预测角度、参照像素数量和
    目标像素的位置时,具体用于:将图像粗糙度与预获取的最大粗糙度阈值比较:若图像粗糙
    度大于等于最大粗糙度阈值,则生成处理错误提示信息,若图像粗糙度小于最大粗糙度阈
    值,则当扇径为第一扇径,则选定参照像素数量为3~4个,当扇径为第二扇径,则选定参照
    像素数量为8~10个,当扇径为第三扇径,则选定参照像素数量为7~15个;根据选定的参照
    像素数量,设置目标像素的虚拟位置和上下文像素矢量;遍历目标像素的虚拟位置,根据上
    下文像素矢量,获取性能遍历结果;根据性能遍历结果和预获取的参数比重信息,设置最大
    预测角度和目标像素的位置。在此,该系统能够结合水印信息的负载量,设定预测扇形的扇
    径,以实现水印信息的有效嵌入。同时,预测系统的性能还和图像内容有关,而信息隐藏性
    能的优劣,直接决定于对目标像素的预测能力,因此,先确定目标像素预测能力,后选择相
    应的预测策略,衡量像素预测能力的系统也十分必要,在此,该系统还能够根据不同的扇
    径,获取性能遍历结果,并结合参数比重信息,以设置最优预测参数,以获取最佳预测性能,
    有助于提高嵌入容量和嵌入质量。

    信息嵌入子系统4在根据最大预测角度、参照像素数量和目标像素的位置,对目标
    像素进行预测,获取目标像素的预测误差时,具体用于:根据最大预测角度和参照像素数
    量,确定上下文像素矢量;将上下文像素矢量中上下文像素的像素灰度值进行排序,获取最
    小像素灰度值和最大像素灰度值;根据最小像素灰度值和最大像素灰度值,通过如下公式,
    对目标像素进行预测,获取目标像素的预测值,


    其中,为第i行、第j列的目标像素的预测值,xi,j为第i行、第j列的目标像素的
    真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像素矢量中最大像
    素灰度值,VC为上下文像素矢量中像素灰度值;根据目标像素的预测值和真实值,通过如下
    公式,获取目标像素的预测误差,

    其中,pe为目标像素的预测误差,为第i行、第j列的目标像素的预测值,xi,j为
    第i行、第j列的目标像素的真实值。在此,该系统能够结合最大预测角度、参照像素数量和
    目标像素的位置,对目标像素进行预测,有助于提高目标像素预测误差的准确性,且为水印
    信息的嵌入提供有效信息支持。

    信息嵌入子系统4在根据目标像素的预测误差和辅助信息的存储位置,将水印信
    息嵌入载体图像时,具体用于:根据目标像素的预测误差,通过如下公式,进行平移和扩展,
    获取平移和扩展后的预测误差,


    其中,PE为平移和扩展后的预测误差,pe为目标像素的预测误差,xi,j为第i行、第j
    列的目标像素的真实值,min(C)为上下文像素矢量中最小像素灰度值,max(C)为上下文像
    素矢量中最大像素灰度值,VC为上下文像素矢量中像素灰度值;根据辅助信息的存储位置,
    以及平移和扩展后的预测误差,将水印信息嵌入载体图像。在此,该系统采用扩展的预测误
    差用来表征嵌入信息的容量,平移的预测误差用来保证可逆性。

    最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽
    管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依
    然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进
    行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术
    方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

    关于本文
    本文标题:基于可逆信息隐藏的钝角预测方法、系统.pdf
    链接地址://www.4mum.com.cn/p-6001326.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 乐彩江西时时彩 篮球彩票中奖计算方法 华东15选5彩票 安徽十一选五任五遗漏 百人牛牛游戏作弊器 体育彩票售票点赚钱不 急速赛车电影国语 2014年双色彩票开奖 股票涨跌停计算 福彩双色球号码预测 新疆时时彩开奖号和值走势图 福建快3跨度表 博远棋牌官方下载 平码平肖 真钱彩金捕鱼游戏平台 20选5中奖率