• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 11
    • 下载费用:30 金币  

    重庆时时彩微信群群主违法吗: SI基微机械悬臂梁耦合直接加热式毫米波信号检测器.pdf

    关 键 词:
    SI 微机 悬臂梁 耦合 直接 加热 毫米波 信号 检测器
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201710052652.3

    申请日:

    2017.01.24

    公开号:

    CN106771557A

    公开日:

    2017.05.31

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||实质审查的生效IPC(主分类):G01R 21/02申请日:20170124|||公开
    IPC分类号: G01R21/02; G01R23/02; G01R25/00; G01R15/00 主分类号: G01R21/02
    申请人: 东南大学
    发明人: 廖小平; 严嘉彬
    地址: 211189 江苏省南京市江宁区东南大学路2号
    优先权:
    专利代理机构: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 杨晓玲
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201710052652.3

    授权公告号:

    ||||||

    法律状态公告日:

    2019.03.05|||2017.06.23|||2017.05.31

    法律状态类型:

    授权|||实质审查的生效|||公开

    摘要

    本发明的Si基微机械悬臂梁耦合直接加热式毫米波信号检测器,结构由悬臂梁耦合结构、功率合成/分配器、直接加热式微波功率传感器和开关构成。悬臂梁耦合结构包括两组悬臂梁,每组悬臂梁由两个对称的悬臂梁构成,两个悬臂梁之间CPW传输线的电长度在所测信号频率范围内的中心频率35GHz处为λ/4。功率通过输入端口对应的CPW信号线终端的直接加热式微波功率传感器进行检测;频率检测通过利用直接加热式微波功率传感器测量两路在中心频率处相位差为90度的耦合信号的合成功率实现;相位检测通过将两路在中心频率处相位差为90度的耦合信号,分别同两路等分后的参考信号合成,同样利用直接加热式微波功率传感器检测合成功率,从而获得待测信号的相位。

    权利要求书

    1.一种Si基微机械悬臂梁耦合直接加热式毫米波信号检测器,其特征是:该信号检测
    器由悬臂梁耦合结构(14)、功率合成器/分配器、直接加热式微波功率传感器和开关构成;
    其中,悬臂梁耦合结构(14)上下、左右对称,由CPW中央信号线(3)、传输线地线(4)、悬臂梁
    (5)、悬臂梁锚区(6)构成,悬臂梁(5)置于CPW中央信号线(3)的上方,在悬臂梁(5)的下方有
    一层Si3N4介电层(11)覆盖中央信号线(3);待测信号由悬臂梁耦合结构(14)的第一端口(1-
    1)输入,第二端口(1-2)接第一直接加热式微波功率传感器;上方两个悬臂梁(5)耦合的信
    号由第三端口(1-3)和第四端口(1-4)输出,第三端口(1-3)与第一开关(18)的第七端口(2-
    1)相连,第四端口(1-4)与第二开关(19)的第十端口(3-1)相连,第一开关(18)的第八端口
    (2-2)与第二直接加热式微波功率传感器相连,第九端口(2-3)与第一功率合成器的第十三
    端口(4-1)相连,第二开关(19)的第十一端口(3-2)与第三直接加热式微波功率传感器相
    连,第十二端口(3-3)与第一功率合成器的第十四端口(4-2)相连,最后,第一功率合成器的
    第十五端口(4-3)接第四直接加热式微波功率传感器;下方两个悬臂梁(5)耦合的信号由第
    五端口(1-5)和第六端口(1-6)输出,第五端口(1-5)与第二功率合成器的第十九端口(6-1)
    相连,第六端口(1-6)与第三功率合成器的第二十二端口(7-1)相连,待测信号从功率分配
    器的第十六端口(5-1)输入,功率分配器的第十七端口(5-2)与第二功率合成器的第二十端
    口(6-2)相连,第十八端口(5-3)与第三功率合成器的第二十三端口(7-2)相连,第二功率合
    成器的第二十一端口(6-3)接第五直接加热式微波功率传感器,第三功率合成器的第二十
    四端口(7-3)接第六直接加热式微波功率传感器。
    2.根据权利要求1所述的Si基微机械悬臂梁耦合直接加热式毫米波信号检测器,其特
    征是:开关由CPW中央信号线(3)、传输线地线(4)、悬臂梁(5)、悬臂梁锚区(6)和下拉电极
    (13)构成,下拉电极(13)上覆盖有一层Si3N4介电层(11),未施加直流电压时,两个支路处于
    断开状态,通过在下拉电极(13)上施加一定的直流偏置,可实现对应支路的导通,进一步实
    现耦合功率检测和频率检测两种状态的转换。
    3.根据权利要求1所述的Si基微机械悬臂梁耦合直接加热式毫米波信号检测器,其特
    征是:直接加热式微波功率传感器由CPW中央信号线(3)、传输线地线(4)、MIM电容(8)、终端
    电阻(10)、输出Pad(12)构成,用于检测微波信号的功率大小,终端电阻(10)设计为CPW传输
    线的匹配负载,同时作为热电偶的半导体臂,MIM电容(8)作为隔直电容,起到阻断直流通路
    和微波通路的作用,在终端电阻(10)热端下方的Si衬底被刻蚀,用于增大传感器的灵敏度,
    为了提高冷热端的温差,终端电阻(10)设计为梯形。

    说明书

    Si基微机械悬臂梁耦合直接加热式毫米波信号检测器

    技术领域

    本发明提出了一种Si基微机械悬臂梁耦合直接加热式毫米波信号检测器,属于微
    电子机械系统(MEMS)的技术领域。

    背景技术

    长为1~10毫米的电磁波称为毫米波,处于较高的微波频段,在通信、雷达、制导、
    遥感技术、射电天文学、临床医学和波谱学方面都有着重要研究价值。功率、频率和相位作
    为微波信号的三大参数,其检测是电磁测量的重要组成部分,在微波技术的应用中发挥着
    十分关键的作用。结构小型化和多功能集成是未来信号检测系统的发展趋势,随着MEMS技
    术的不断成熟,很多信号检测器件成功实现了小型化,比如微波功率传感器、微波相位检测
    器以及微波频率检测器。在此基础上,在同一芯片上实现三种信号检测的集成系统具有重
    要意义。

    发明内容

    技术问题:

    本发明的目的是提供一种Si基微机械悬臂梁耦合直接加热式毫米波信号检测器,
    利用直接式微波功率传感器实现毫米波功率的检测,通过悬臂梁耦合结构耦合部分待测信
    号,分别进行毫米波频率和相位的检测,实现了功率、频率和相位的集成检测,具有结构简
    单、版图面积小的优点。

    技术方案:为解决上述技术问题,本发明提出了一种Si基微机械悬臂梁耦合直接
    加热式毫米波信号检测器。该信号检测器由悬臂梁耦合结构、功率合成器/分配器、直接加
    热式微波功率传感器和开关构成;其中,悬臂梁耦合结构上下、左右对称,由CPW中央信号
    线、传输线地线、悬臂梁、悬臂梁锚区构成,悬臂梁置于CPW中央信号线的上方,在悬臂梁的
    下方有一层Si3N4介电层覆盖中央信号线;待测信号由悬臂梁耦合结构的第一端口输入,第
    二端口接第一直接加热式微波功率传感器;上方两个悬臂梁耦合的信号由第三端口和第四
    端口输出,第三端口与第一开关的第七端口相连,第四端口与第二开关的第十端口相连,第
    一开关的第八端口与第二直接加热式微波功率传感器相连,第九端口与第一功率合成器的
    第十三端口相连,第二开关的第十一端口与第三直接加热式微波功率传感器相连,第十二
    端口与第一功率合成器的第十四端口相连,最后,第一功率合成器的第十五端口接第四直
    接加热式微波功率传感器;下方两个悬臂梁耦合的信号由第五端口和第六端口输出,第五
    端口与第二功率合成器的第十九端口相连,第六端口与第三功率合成器的第二十二端口相
    连,待测信号从功率分配器的第十六端口输入,功率分配器的第十七端口与第二功率合成
    器的第二十端口相连,第十八端口与第三功率合成器的第二十三端口相连,第二功率合成
    器的第二十一端口接第五直接加热式微波功率传感器,第三功率合成器的第二十四端口接
    第六直接加热式微波功率传感器。

    开关由CPW中央信号线、传输线地线、悬臂梁、悬臂梁锚区和下拉电极构成,下拉电
    极上覆盖有一层Si3N4介电层,未施加直流电压时,两个支路处于断开状态,通过在下拉电极
    上施加一定的直流偏置,可实现对应支路的导通,进一步实现耦合功率检测和频率检测两
    种状态的转换。

    直接加热式微波功率传感器由CPW中央信号线、传输线地线、MIM电容、终端电阻、
    输出Pad构成,用于检测微波信号的功率大小,终端电阻设计为CPW传输线的匹配负载,同时
    作为热电偶的半导体臂,MIM电容作为隔直电容,起到阻断直流通路和微波通路的作用,在
    终端电阻热端下方的Si衬底被刻蚀,用于增大传感器的灵敏度,为了提高冷热端的温差,终
    端电阻设计为梯形。

    待测毫米波信号从第一端口输入,由第二端口相连的直接加热式微波功率传感器
    检测毫米波功率;进行毫米波频率和相位检测时,首先通过开关将耦合信号输入到直接加
    热式微波功率传感器测出耦合信号的功率大小,接着通过开关将两路所测信号频率范围内
    的中心频率35GHz处相位差为90度的耦合信号输入到功率合成器,同样使用直接加热式微
    波功率传感器检测合成信号功率大小,由耦合信号和合成信号的大小可以推算出毫米波信
    号的频率;另外两路所测信号频率范围内的中心频率35GHz处相位差为90度的耦合信号分
    别和功率等分后的参考信号合成,由直接加热式微波功率传感器检测出两路合成信号功率
    的大小,联立方程可以求解待测毫米波信号的相位,可实现整个周期范围内相位角的测量。

    有益效果:

    本发明相对于现有的信号检测器具有以下优点:

    1.本发明的信号检测器可以同时实现毫米波信号功率、频率和相位的测量,有效
    节省了版图面积。

    2.本发明的信号检测器原理和结构简单,全部由无源器件组成,不存在直流功耗;

    3.本发明的信号检测器由于采用直接加热式微波功率传感器进行功率检测,灵敏
    度大,工艺简单。

    4.兼容COMS工艺线,适合批量生产,成本低、可靠性高。

    附图说明

    图1为本发明Si基微机械悬臂梁耦合直接加热式毫米波信号检测器的实现结构示
    意图;

    图2为本发明悬臂梁耦合结构的A-A’向的剖面图;

    图3为本发明功率分配/合成器的俯视图;

    图4为本发明直接加热式微波功率传感器的俯视图;

    图5为本发明直接加热式微波功率传感器的B-B’向的剖面图;

    图6为本发明开关的俯视图;

    图7为本发明开关C-C’向的剖面图。

    图中包括:高阻Si衬底1,SiO2层2,CPW中央信号线3,传输线地线4,悬臂梁5,悬臂
    梁锚区6,ACPS信号线7,MIM电容8,隔离电阻9,终端电阻10,Si3N4介电层11,输出Pad12,下拉
    电极13,悬臂梁耦合结构14,第一开关15,第二开关16,第一端口1-1,第二端口1-2,第三端
    口1-3,第四端口1-4,第五端口1-5,第六端口1-6,第七端口2-1,第八端口2-2,第九端口2-
    3,第十端口3-1,第十一端口3-2,第十二端口3-3,第十三端口4-1,第十四端口4-2,第十五
    端口4-3,第十六端口5-1,第十七端口5-2,第十八端口5-3,第十九端口6-1,第二十端口6-
    2,第二十一端口6-3,第二十二端口7-1,第二十三端口7-2,第二十四端口7-3。

    具体实施方式

    下面结合附图对本发明的具体实施方式做进一步说明。

    参见图1-7,本发明提出了一种Si基微机械悬臂梁耦合直接加热式毫米波信号检
    测器。实现结构主要包括:悬臂梁耦合结构14、功率合成/分配器、直接加热式微波功率传感
    器和开关。其中,悬臂梁耦合结构14用于耦合待测信号的部分功率,用于频率和相位检测;
    功率合成器用于两路信号的合成,功率分配器用于将一路信号等分成两路信号,两者具有
    相同的结构;直接加热式微波功率传感器用于检测微波信号的功率,原理是基于焦耳效应
    和塞贝克效应;开关用于转换耦合功率检测和频率检测两种状态。

    悬臂梁耦合结构14由CPW中央信号线3、传输线地线4、悬臂梁5、悬臂梁锚区6构成。
    两组悬臂梁5悬于CPW中央信号线3上方,中间隔有Si3N4介质层11和空气,等效一个双介质层
    的MIM电容,悬臂梁5末端通过悬臂梁锚区6同耦合分支的CPW中央信号线3相连,每组悬臂梁
    5包括两个对称设计的悬臂梁5,两组悬臂梁5之间的CPW传输线电长度在所测信号频率范围
    内的中心频率35GHz处为λ/4。通过调整悬臂梁5附近的传输线地线4的形状,改变CPW传输线
    的阻抗,用于补偿悬臂梁5的引入带来的电容变化。

    功率分配/合成器由CPW中央信号线3、传输线地线4、ACPS信号线7、MIM电容8和隔
    离电阻9构成。CPW传输线的特征阻抗为50Ω,ACPS传输线的特征阻抗为70.7Ω,电长度为λ/
    4,隔离电阻的阻值为100Ω。MIM电容8横跨于两个地线之间,位于CPW中央信号线3上方,介
    电层为一层Si3N4。传输线采用弯折结构,同时在拐角处进行了补偿,用于减小版图面积。

    直接加热式微波功率传感器由CPW中央信号线3、传输线地线4、MIM电容8、终端电
    阻10、输出Pad12构成,用于检测微波信号的功率大小,终端电阻10设计为CPW传输线的匹配
    负载,同时作为热电偶的半导体臂,MIM电容8作为隔直电容,起到阻断直流通路和微波通路
    的作用,在终端电阻10热端下方的Si衬底被刻蚀,用于增大传感器的灵敏度,为了提高冷热
    端的温差,终端电阻10设计为梯形。

    开关由CPW中央信号线3、传输线地线4、悬臂梁5、悬臂梁锚区6和下拉电极13构成,
    下拉电极13上覆盖有一层Si3N4介电层11,未施加直流电压时,两个支路处于断开状态,通过
    在下拉电极13上施加一定的直流偏置,可实现对应支路的导通,进一步实现耦合功率检测
    和频率检测两种状态的转换。

    进行毫米波信号检测时,待测信号从第一端口1-1输入,参考信号从第十六端口5-
    1输入,在第二端口1-2通过连接直接加热式微波功率传感器进行毫米波信号功率的检测。

    两组悬臂梁5中各选一路耦合信号,中心频率f0=35GHz处相位差为90度,频率f时
    相位差可表示为:


    两路耦合信号可以表示为:



    其中,a1和a2分别为两路耦合信号的幅度,ω为输入信号的角频率,为初始相位,
    通过开关使得耦合信号输入到直接加热式微波功率传感器,可以得到a1和a2的大小。合成信
    号的功率可表示为:


    为获得合成信号的功率P,通过开关使得耦合信号输入到功率合成器,并由直接加
    热式微波功率传感器进行功率检测。由(1)和(4)式,信号频率和输出功率的关系可以表示
    为:


    根据上式关系,可由直接加热式微波功率传感器的输出得到待测毫米波信号的频
    率。

    进行相位检测时,另外两路所测信号频率范围内的中心频率35GHz处相位差为90
    度的耦合信号分别和功率等分后的参考信号合成,功率等分后的参考信号可以表示为:

    v3=a3cos(ωt+φ) (6)则合成信号的功率大小分别为:



    P1和P2的大小由终端的微波功率传感器进行检测,根据(10)和(11)所示待测信号
    相位和合成信号功率的大小的关系,只存在一个未知量,由直接加热式微波功率传感器
    的输出热电势可以得到待测毫米波信号的相位,并可实现整个周期范围内相位角的测量。

    本发明的Si基微机械悬臂梁耦合直接加热式毫米波信号检测器的实现结构的制
    备方法如下:

    1)准备4英寸高阻Si衬底1,电导率为4000Ωcm,厚度为400μm;

    2)热生长一层SiO2层2,厚度为1.2μm;

    3)化学气相淀积(CVD)生长一层多晶Si,厚度为0.4μm;

    4)涂覆一层光刻胶并光刻,除多晶Si电阻区域暴露以外,其他区域被光刻胶?;?,
    接着注入磷(P)离子,掺杂浓度为1015cm-2,形成隔离电阻9和终端电阻10;

    5)涂覆一层光刻胶,光刻多晶Si电阻图形,再通过干法刻蚀形成隔离电阻9和终端
    电阻10;

    6)涂覆一层光刻胶,光刻去除传输线、下拉电极13和输出Pad12处的光刻胶;

    7)电子束蒸发形成第一层金(Au),厚度为0.3μm,去除光刻胶以及光刻胶上的Au,
    剥离形成传输线的第一层Au、下拉电极13以及输出Pad12;

    8)LPCVD淀积一层Si3N4,厚度为0.1μm;

    9)涂覆一层光刻胶,光刻并保留MIM电容8和悬臂梁5下方的光刻胶,干法刻蚀
    Si3N4,形成Si3N4介电层11;

    10)均匀涂覆一层聚酰亚胺并光刻图形,厚度为2μm,保留悬臂梁5下方的聚酰亚胺
    作为牺牲层;

    11)涂覆光刻胶,光刻去除悬臂梁5、悬臂梁锚区6、传输线、MIM电容8、输出Pad12位
    置的光刻胶;

    12)蒸发500/1500/300A°的Ti/Au/Ti的种子层,去除顶部的Ti层后再电镀一层厚
    度为2μm的Au层;

    13)去除光刻胶以及光刻胶上的Au,形成悬臂梁5、悬臂梁锚区6、传输线、MIM电容8
    和输出Pad12;

    14)深反应离子刻蚀(DRIE)衬底材料背面,制作热电堆下方的薄膜结构;

    15)释放聚酰亚胺牺牲层:显影液浸泡,去除悬臂梁5下的聚酰亚胺牺牲层,去离子
    水稍稍浸泡,无水乙醇脱水,常温下挥发,晾干。

    区分是否为该结构的标准如下:

    本发明的Si基微机械悬臂梁耦合直接加热式毫米波信号检测器,结构的衬底为高
    阻Si。待测毫米波信号由第一端口1-1输入,由第二端口1-2连接直接加热式微波功率传感
    器进行毫米波信号功率的检测,位于CPW中央信号线3上方的两组悬臂梁5耦合部分待测毫
    米波信号,每组悬臂梁5包括两个对称设计的悬臂梁5,两个悬臂梁5耦合的功率相等,其中
    一个悬臂梁5的耦合信号用于耦合功率和频率检测,两种状态转换通过开关实现,另一个悬
    臂梁5的耦合信号用于相位检测;首先通过开关使得耦合信号直接输入到直接加热式微波
    功率传感器检测耦合功率大小,接着通过开关使得两路在所测信号频率范围内的中心频率
    35GHz处相位差为90度的耦合信号进行合成并由直接加热式微波功率传感器检测合成功
    率,从而推算出待测信号的频率;相位检测时,将两路在所测信号频率范围内的中心频率
    35GHz处相位差为90度的耦合信号,分别同两路等分后的参考信号合成,同样利用直接加热
    式微波功率传感器检测合成功率,从而获得待测信号的相位。

    满足以上条件的结构即视为本发明的Si基微机械悬臂梁耦合直接加热式毫米波
    信号检测器。

       内容来自专利网重庆时时彩单双窍门 www.4mum.com.cn转载请标明出处

    关于本文
    本文标题:SI基微机械悬臂梁耦合直接加热式毫米波信号检测器.pdf
    链接地址://www.4mum.com.cn/p-6000846.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 福建11选5遗漏数据 快乐赛车大作战 双色球基本走势图9188体坛网体坛周报 云南快乐10分怎么玩 2010年股票融资额 山东群英会几点结束 3d试机号今天晚上金码一彩宝网 每日农经 山洞养竹鼠赚钱有道 虚拟足球e球彩胜平负开奖结果 极速快3技巧规律 足彩14场任选9场 湖北快3振幅 南通棋牌游戏官方 怎样才能中大奖呢 nba胜分差可以穿几场 ios开发什么比较赚钱软件