• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 13
    • 下载费用:30 金币  

    网上的重庆时时彩可信吗: 一种基于极限学习机的改进自适应加权平均图像去噪方法.pdf

    摘要
    申请专利号:

    重庆时时彩单双窍门 www.4mum.com.cn CN201611154268.6

    申请日:

    2016.12.14

    公开号:

    CN106803237A

    公开日:

    2017.06.06

    当前法律状态:

    实审

    有效性:

    审中

    法律详情: 实质审查的生效IPC(主分类):G06T 5/00申请日:20161214|||公开
    IPC分类号: G06T5/00 主分类号: G06T5/00
    申请人: 银江股份有限公司
    发明人: 李丹; 吴越; 李建元; 钱智刚; 于海龙; 刘兴田; 刘飞黄; 刘祥
    地址: 310012 浙江省杭州市益乐路223号1幢1层
    优先权:
    专利代理机构: 杭州之江专利事务所(普通合伙) 33216 代理人: 张慧英
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201611154268.6

    授权公告号:

    |||

    法律状态公告日:

    2017.06.30|||2017.06.06

    法律状态类型:

    实质审查的生效|||公开

    摘要

    本发明涉及一种基于极限学习机的改进自适应加权平均图像去噪方法,包括如下步骤:1)输入训练图像集和待去噪处理的目标图像;2)利用极限学习机结合像素值和像素的位阶逻辑差对训练图像集进行训练得到极限学习机模型;3)通过极限学习机模型对目标图像进行检测,得到图像噪声位置;4)采用自适应加权平均算法进行图像去噪处理;5)输出去噪处理后的目标图像,并对去噪效果进行评估。本发明方法适用性强、可行性高、计算速度快、实效性高、实用价值高,同时能达到较好的图像去噪效果。

    权利要求书

    1.一种基于极限学习机的改进自适应加权平均图像去噪方法,其特征在于,包括如下
    步骤:
    (1)输入训练图像集和待去噪处理的目标图像;
    (2)利用极限学习机结合像素值和像素的位阶逻辑差对训练图像集进行训练得到极限
    学习机模型;
    (3)通过极限学习机模型对目标图像进行检测,得到图像噪声位置;
    (4)采用自适应加权平均算法进行图像去噪处理:计算非噪声像素的邻域加权曲波变
    换作为噪声像素窗口的曲波变换,并通过曲波反变换得到重构像素,完成去噪;其中权重采
    用邻域重建偏差进行获??;
    (5)输出去噪处理后的目标图像,并对去噪效果进行评估。
    2.根据权利要求1所述的一种基于极限学习机的改进自适应加权平均图像去噪方法,
    其特征在于:所述的像素的位阶逻辑差定义及获取方法如下:
    (i)设图像I像素(x,y)的像素值为a(x,y),以(x,y)为中心的(2s+1)*(2s+1)窗口为W,s
    为正整数,(x+x′,y+y′)为窗口W中不为(x,y)的像素,像素值为a(x+x′,y+y′);
    (ii)a(x,y)与a(x+x′,y+y′)的逻辑差为:
    <mrow> <msub> <mi>d</mi> <mrow> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>log</mi> <mi>t</mi> </msub> <mo>|</mo> <mi>a</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <mi>y</mi> <mo>+</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>a</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>,</mo> <mo>&ForAll;</mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>&Element;</mo> <mi>W</mi> <mo>\</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    其中,dx′y′为逻辑差,t为控制逻辑函数形状的正整数,对t>1,dx′y′取值为(-∞,0];
    (iii)采用如下线性变换公式将dx′y′值转换到[0,1]区间:
    dx′y′(x,y)=1+max{logt|a(x+x′,y+y′)-a(x,y)|,-ε}/ε (2)
    其中,ε为控制转换位置的正整数,t和ε可按实践经验选??;
    (iv)对所有的dx′y′值进行升序排列,取K个最小值之和定义为位阶逻辑差:
    <mrow> <msub> <mi>R</mi> <mi>K</mi> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    其中,RK为位阶逻辑差,dk为排序后第k个最小的dx′y′值。
    3.根据权利要求1所述的一种基于极限学习机的改进自适应加权平均图像去噪方法,
    其特征在于:所述得到极限学习机模型的方法如下:
    1)初始化极限学习机,设Xi=[Xi1,Xi2,...,Xin]T∈Rn为第i个输入样本,n为输入节点
    数;Ti=[Ti1,Ti2,...,Tim]T∈Rm为第i个期望输出,m为输出层节点,i=1,2,…,N,N为样本
    数;激活函数为g(x),隐层节点数为L;
    2)随机分配输入权值wj和偏置bj,j=1,2,…L;
    3)计算隐层节点输出矩阵H,计算方法如下:
    3.1)隐层节点输出表达式为:
    其中,βj为隐层第j个节点的输出权重,Oi为第i个样本的输出;训练的目标是使得输出
    的误差最?。杭创嬖趙j、Xi、bj,使得下式(5)成立:
    <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </msubsup> <msub> <mi>&beta;</mi> <mi>j</mi> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>*</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    3.2)将式(5)用矩阵形式表示:H·β=T:
    <mrow> <mi>H</mi> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>w</mi> <mi>L</mi> </msub> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>L</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>w</mi> <mi>L</mi> </msub> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>L</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mi>N</mi> <mo>&times;</mo> <mi>L</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
    β=[β1,β2,...,βL]T,T=[T1,T2,...,TN]T (7)
    3.3)当wj和bj被随机确定后,隐层输出矩阵H可被唯一确定;
    4)根据H·β=T得到β=H+T,其中H+是H的Moore-Penrose广义逆矩阵,计算隐层输出权
    重β;
    5)根据最小化损失函数得到训练输出模型:式(5)的目标函数可表示为:
    <mrow> <mo>|</mo> <mo>|</mo> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>,</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mover> <mi>&beta;</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>T</mi> <mo>|</mo> <mo>|</mo> <mo>=</mo> <msub> <mi>min</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>&beta;</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>&beta;</mi> <mo>-</mo> <mi>T</mi> <mo>|</mo> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
    式(8)等价于最小化损失函数:
    <mrow> <mi>E</mi> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <mo>|</mo> <mo>|</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </msubsup> <msub> <mi>&beta;</mi> <mi>j</mi> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>*</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
    其中,E为最小损失值,由此得到最优w、β、b作为训练输出模型。
    4.根据权利要求1所述的一种基于极限学习机的改进自适应加权平均图像去噪方法,
    其特征在于:所述的极限学习机模型为噪声检测器,输入样本为像素值和像素的位阶逻辑
    差,输出样本为噪声位置信息。
    5.根据权利要求1所述的一种基于极限学习机的改进自适应加权平均图像去噪方法,
    其特征在于:所述步骤(4)采用自适应加权平均算法进行图像去噪处理的步骤如下:
    (a)设窗口Wa大小为Ws×Ws,Ws为不小于3的奇数,窗口的中心点为图像I的某个像素;若
    中心点不是噪声像素,则移动窗口Wa使得中心点落于图像的下一个像素;
    (b)计算窗口Wα中的非噪声像素数num,若则执行步骤(d);否则执行步
    骤(c);
    (c)计算自适应窗口大小后跳转执行步骤(b);其中自适应窗口大小的计算公式为Ws=
    Ws+2;
    (d)根据num个非噪声像素,计算每个非噪声像素的邻域加权曲波变换作为噪声像素窗
    口的曲波变换,计算公式如下:
    <mrow> <msub> <mi>C</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> </mrow> </msubsup> <msub> <mi>w</mi> <mi>i</mi> </msub> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
    其中,wi表示第i个非噪声像素的邻域窗口曲波变换的权重,Cx,y表示中心为(x,y)的噪
    声窗口的曲波变换,Ci,x′,y′表示(x,y)的窗口内非噪声像素点(x′,y′)的邻域窗口的曲波变
    换,曲波变换计算公式如下:

    其中,C(j,l,k)为曲波变换系数,Wa(t)为窗口Wa的图像信号,为基函数,s为尺度,o
    为方向,l为位移;
    (e)对噪声像素窗口的曲波变换进行反变换得到去噪后的重构像素,完成去噪处理;其
    中,曲波反变换可通过Matlab的Curvlab包实现。
    6.根据权利要求5所述的一种基于极限学习机的改进自适应加权平均图像去噪方法,
    其特征在于:所述的权重wi的计算公式如下:
    <mrow> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&eta;</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&eta;</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
    其中,ηi为第i个非噪声像素的邻域重建偏差。
    7.根据权利要求6所述的一种基于极限学习机的改进自适应加权平均图像去噪方法,
    其特征在于:所述邻域重建偏差的计算方法如下:
    (A)建立目标函数:
    (A.1)以Wx′,y′表示非噪声像素(x′,y′)的邻域窗口,Φ表示确定的列数大于行数的超完
    备字典,Ω表示稀疏表示系数矩阵,则邻域重建目标为提高Ω的稀疏化程度使得超完备字
    典按照稀疏矩阵中的系数线性组合后与原始信号偏差最小,即:
    minΩ||Ω||0 s.t.||Wx′y′-ΦΩ||<λ (13)
    其中,λ为较小常数,||Ω||0表示Ω的l0范数,式(13)转化为目标函数:
    <mrow> <mover> <mi>&Omega;</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>min</mi> <mi>&Omega;</mi> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>W</mi> <mrow> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> </mrow> </msub> <mo>-</mo> <mi>&Phi;</mi> <mi>&Omega;</mi> <mo>|</mo> <mo>|</mo> <mo>+</mo> <mi>&mu;</mi> <mo>|</mo> <mo>|</mo> <mi>&Omega;</mi> <mo>|</mo> <msub> <mo>|</mo> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
    其中,为最优稀疏矩阵,μ为大于0的常数;
    (A.2)对原始图像信号Wx′,y′比例放大得到以Wx′y′为对象,
    f(·)为多核自适应插值操作:ψ1、ψ2分别是水平和垂直方向上的缩放尺
    度,E是插值误差,则式(14)转化为如下表达式:
    <mrow> <mover> <mi>&Omega;</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>min</mi> <mi>&Omega;</mi> </msub> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> </mrow> </msub> <mo>-</mo> <mi>&Phi;</mi> <mi>&Omega;</mi> <mo>|</mo> <mo>|</mo> <mo>+</mo> <mi>&mu;</mi> <mo>|</mo> <mo>|</mo> <mi>&Omega;</mi> <mo>|</mo> <msub> <mo>|</mo> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
    (A.3)采用基追踪方法,用l1范数代替l0范数,如下式所示:
    <mrow> <mover> <mi>&Omega;</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>min</mi> <mi>&Omega;</mi> </msub> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> </mrow> </msub> <mo>-</mo> <mi>&Phi;</mi> <mi>&Omega;</mi> <mo>|</mo> <mo>|</mo> <mo>+</mo> <mi>&mu;</mi> <mo>|</mo> <mo>|</mo> <mi>&Omega;</mi> <mo>|</mo> <msub> <mo>|</mo> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
    (B)计算邻域重建偏差:根据步骤(A)得到的最优稀疏矩阵,结合超完备字典表进行邻
    域重建,重建偏差如下:
    <mrow> <msub> <mi>&eta;</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mover> <mi>W</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> </mrow> </msub> <mo>-</mo> <mi>&Phi;</mi> <msub> <mover> <mi>&Omega;</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
    其中,为第i个非噪声像素的邻域窗口按比例放大后的图像信号,为第i个非
    噪声像素的邻域窗口的最优稀疏矩阵。
    8.根据权利要求6所述的一种基于极限学习机的改进自适应加权平均图像去噪方法,
    其特征在于:所述步骤(5)的评估方法为计算去噪后的图像与原始图像的峰值信噪比作为
    图像去噪的质量评估标准,峰值信噪比越大,去噪效果越好;具体如下:
    (I)对原始图像I和去噪后的图像I′,两者大小均为L1×L2,I和I′的均方差为:
    <mrow> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>&times;</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msubsup> <mi>&Sigma;</mi> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mi>&Sigma;</mi> <mrow> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>|</mo> <mo>|</mo> <mi>I</mi> <mo>(</mo> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> <mo>-</mo> <msup> <mi>I</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> <mo>|</mo> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
    其中,MSE为均方差;
    (II)根据式(18)可定义峰值信噪比为:
    <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> <mn>10</mn> <msub> <mi>log</mi> <mn>10</mn> </msub> <mo>(</mo> <mfrac> <mrow> <mi>max</mi> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mi>M</mi> <mi>S</mi> <mi>E</mi> </mrow> </mfrac> <mo>)</mo> <mo>=</mo> <mn>20</mn> <msub> <mi>log</mi> <mn>10</mn> </msub> <mo>(</mo> <mfrac> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <mi>I</mi> <mo>)</mo> </mrow> </mrow> <msqrt> <mfrac> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mi>&Sigma;</mi> <mrow> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>|</mo> <mo>|</mo> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>I</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>&times;</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </mfrac> </msqrt> </mfrac> <mo>)</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
    其中,max(I)表示图像点颜色的最大数值。

    说明书

    一种基于极限学习机的改进自适应加权平均图像去噪方法

    技术领域

    本发明涉及图像处理和机器学习领域,尤其涉及一种基于极限学习机的改进自适
    应加权平均图像去噪方法。

    背景技术

    随着各种数字仪器和数码产品的普及,数字图像成为人类生活中最常用的信息载
    体之一,广泛应用于交通、医疗、航空航天、海事等领域。在数字图像的形成、传输、存储、转
    换过程中,不可避免会受到各种噪声的影响,导致图像质量下降。图像去噪指改善图像质
    量,剔除或降低图像中的噪声影响,增大图像信噪比,保留图像完整性。作为数字图像处理
    中的重要环节和关键步骤,图像去噪结果的好坏直接影响到后续的图像处理工作如图像分
    割、边缘检测、目标定位等。因此,为了获取高质量数字图像,对图像进行去噪处理是十分必
    要的。

    目前主要的图像去噪算法主要有以下三类:1)空间域滤波,直接在原图像上对图
    像灰度值进行处理,常见有邻域平均法、中值滤波法等。该类方法实现简单,但不适用于高
    密度噪声图像,且去掉图像细节较多容易引起图像模糊。2)变换域方法,将图像从空间域转
    换到变换域,再对变换域中的变换系数进行处理,最后反变换到空间域,常见有傅立叶变
    换、余弦变换、小波变换。该类方法一定程度上会降低图像平滑性或导致图像变模糊。3)偏
    微分方程,该类方法能较好保留图像细节信息,但不适用于高密度噪声图像,处理时间复杂
    性高。

    发明内容

    本发明为克服上述的不足之处,目的在于提供一种基于极限学习机的改进自适应
    加权平均图像去噪方法,本方法通过极限学习机训练噪声检测器对噪声位置进行检测,再
    根据基于中值滤波法改进的自适应加权平均法对图像进行去噪处理,得到恢复的图像,达
    到了较好的图像去噪效果。

    本发明是通过以下技术方案达到上述目的:一种基于极限学习机的改进自适应加
    权平均图像去噪方法,包括如下步骤:

    (1)输入训练图像集和待去噪处理的目标图像;

    (2)利用极限学习机结合像素值和像素的位阶逻辑差对训练图像集进行训练得到
    极限学习机模型;

    (3)通过极限学习机模型对目标图像进行检测,得到图像噪声位置;

    (4)采用自适应加权平均算法进行图像去噪处理:计算非噪声像素的邻域加权曲
    波变换作为噪声像素窗口的曲波变换,并通过曲波反变换得到重构像素,完成去噪;其中权
    重采用邻域重建偏差进行获??;

    (5)输出去噪处理后的目标图像,并对去噪效果进行评估。

    作为优选,所述的像素的位阶逻辑差定义及获取方法如下:

    (i)设图像I像素(x,y)的像素值为a(x,y),以(x,y)为中心的(2s+1)*(2s+1)窗口
    为W,s为正整数,(x+x′,y+y′)为窗口W中不为(x,y)的像素,像素值为a(x+x′,y+y′);

    (ii)a(x,y)与a(x+x′,y+y′)的逻辑差为:


    其中,dx′y′为逻辑差,t为控制逻辑函数形状的正整数,对t>1,dx′y′取值为(-∞,0];

    (iii)采用如下线性变换公式将dx′y′值转换到[0,1]区间:

    dx′y′(x,y)=1+max{logt|a(x+x′,y+y′)-a(x,y)|,-ε}/ε (2)

    其中,ε为控制转换位置的正整数,t和ε可按实践经验选??;

    (iv)对所有的dx′y′值进行升序排列,取K个最小值之和定义为位阶逻辑差:


    其中,RK为位阶逻辑差,dk为排序后第k个最小的dx′y′值。

    作为优选,所述得到极限学习机模型的方法如下:

    1)初始化极限学习机,设Xi=[Xi1,Xi2,...,Xin]T∈Rn为第i个输入样本,n为输入节
    点数;Ti=[Ti1,Ti2,...,Tim]T∈Rm为第i个期望输出,m为输出层节点,i=1,2,…,N,N为样本
    数;激活函数为g(x),隐层节点数为L;

    2)随机分配输入权值wj和偏置bj,j=1,2,…L;

    3)计算隐层节点输出矩阵H,计算方法如下:

    3.1)隐层节点输出表达式为:

    其中,βj为隐层第j个节点的输出权重,Oi为第i个样本的输出;训练的目标是使得
    输出的误差最?。杭创嬖趙j、Xi、bj,使得下式(5)成立:


    3.2)将式(5)用矩阵形式表示:H·β=T:


    β=[β1,β2,...,βL]T,T=[T1,T2,...,TN]T (7)

    3.3)当wj和bj被随机确定后,隐层输出矩阵H可被唯一确定;

    4)根据H·β=T得到β=H+T,其中H+是H的Moore-Penrose广义逆矩阵,计算隐层输
    出权重β;

    5)根据最小化损失函数得到训练输出模型:式(5)的目标函数可表示为:


    式(8)等价于最小化损失函数:


    其中,E为最小损失值,由此得到最优w、β、b作为训练输出模型。

    作为优选,所述的极限学习机模型为噪声检测器,输入样本为像素值和像素的位
    阶逻辑差,输出样本为噪声位置信息。

    作为优选,所述步骤(4)采用自适应加权平均算法进行图像去噪处理的步骤如下:

    (a)设窗口Wa大小为Ws×Ws,Ws为不小于3的奇数,窗口的中心点为图像I的某个像
    素;若中心点不是噪声像素,则移动窗口Wa使得中心点落于图像的下一个像素;

    (b)计算窗口Wa中的非噪声像素数num,若则执行步骤(d);否则执
    行步骤(c);

    (c)计算自适应窗口大小后跳转执行步骤(b);其中自适应窗口大小的计算公式为
    Ws=Ws+2;

    (d)根据num个非噪声像素,计算每个非噪声像素的邻域加权曲波变换作为噪声像
    素窗口的曲波变换,计算公式如下:


    其中,wi表示第i个非噪声像素的邻域窗口曲波变换的权重,Cx,y表示中心为(x,y)
    的噪声窗口的曲波变换,Ci,x′,y′表示(x,y)的窗口内非噪声像素点(x′,y′)的邻域窗口的曲
    波变换,曲波变换计算公式如下:


    其中,C(j,l,k)为曲波变换系数,Wa(t)为窗口Wa的图像信号,为基函数,s为
    尺度,o为方向,l为位移;

    (e)对噪声像素窗口的曲波变换进行反变换得到去噪后的重构像素,完成去噪处
    理;其中,曲波反变换可通过Matlab的Curvlab包实现。

    作为优选,所述的权重wi的计算公式如下:


    其中,ηi为第i个非噪声像素的邻域重建偏差。

    作为优选,所述邻域重建偏差的计算方法如下:

    (A)建立目标函数:

    (A.1)以Wx′,y′表示非噪声像素(x′,y′)的邻域窗口,Φ表示确定的列数大于行数的
    超完备字典,Ω表示稀疏表示系数矩阵,则邻域重建目标为提高Ω的稀疏化程度使得超完
    备字典按照稀疏矩阵中的系数线性组合后与原始信号偏差最小,即:

    minΩ||Ω||0 s.t. ||Wx′,y′-ΦΩ||<λ (13)

    其中,λ为较小常数,||Ω||0表示Ω的l0范数,式(13)转化为目标函数:


    其中,为最优稀疏矩阵,μ为大于0的常数;

    (A.2)对原始图像信号Wx′,y′比例放大得到以Wx′,y′为对象,
    f(·)为多核自适应插值操作:ψ1、ψ2分别是水
    平和垂直方向上的缩放尺度,E是插值误差,则式(14)转化为如下表达式:


    (A.3)采用基追踪方法,用l1范数代替l0范数,如下式所示:


    (B)计算邻域重建偏差:根据步骤(A)得到的最优稀疏矩阵,结合超完备字典表进
    行邻域重建,重建偏差如下:


    其中,为第i个非噪声像素的邻域窗口按比例放大后的图像信号,为第i
    个非噪声像素的邻域窗口的最优稀疏矩阵。

    作为优选,所述步骤(5)的评估方法为计算去噪后的图像与原始图像的峰值信噪
    比作为图像去噪的质量评估标准,峰值信噪比越大,去噪效果越好;具体如下:

    (I)对原始图像I和去噪后的图像I′,两者大小均为L1×L2,I和I′的均方差为:


    其中,MSE为均方差;

    (II)根据式(18)可定义峰值信噪比为:


    其中,max(I)表示图像点颜色的最大数值。

    本发明的有益效果在于:(1)本发明方法适用性强,适用于任何带噪声图像的去
    噪,能有效应用于医学、农业、交通等领域,具有较高的适用性;(2)本发明方法可行性高,通
    过极限学习机训练产生噪声位置检测模型,再利用自适应加权平均算法进行去噪处理,方
    法实际可行;(3)本发明方法计算速度快,采用的极限学习机是一种新型的快速学习算法,
    具有较高的学习速度和训练精度;(4)本发明方法实效性高,通过极限学习机检测噪声位
    置,能有效定位噪声,提高去噪的准确性,减少图像细节信息的丢失,具有较高的实用性和
    精确性;(5)本发明方法实用价值高,能帮助图像后续处理如图像分割、边缘检测等工作的
    顺利推进,具有实际的研究价值和实用价值。

    附图说明

    图1是本发明方法的流程步骤示意图;

    图2是本发明实施例的去噪结果对比示意图1;

    图3是本发明实施例的去噪结果对比示意图2。

    具体实施方式

    下面结合具体实施例对本发明进行进一步描述,但本发明的?;し段Р⒉唤鱿抻?br />此:

    实施例:如图1所示,一种基于极限学习机的改进自适应加权平均图像去噪方法,
    包括以下步骤:

    步骤1:输入训练图像集和待去噪的目标图像。

    步骤2:极限学习机模型训练。通过极限学习机对训练图像集进行训练产生噪声检
    测器,在极限学习机训练时,输入样本除了像素值外,本发明还引入像素的位阶逻辑差,输
    出样本为噪声位置信息。位阶逻辑差定义如下:

    设图像I像素(x,y)的像素值为a(x,y),以(x,y)为中心的(2s+1)*(2s+1)窗口为W,
    s为正整数,(x+x′,y+y′)为窗口W中不为(x,y)的像素,像素值为a(x+x′,y+y′),则a(x,y)与
    a(x+x′,y+y′)的逻辑差为:


    其中dx′y′为逻辑差,t为控制逻辑函数形状的正整数,对任意t>1,dx′y′取值为(-∞,
    0]??刹捎孟率鱿咝员浠还浇玠x′y′转换到[0,1]区间:

    dx′y′(x,y)=1+max{logt|a(x+x′,y+y′)-a(x,y)|,-ε}/ε (21)

    其中ε为控制转换位置的正整数,t和ε可按经验选取,本发明中取t=2,ε=5。

    对所有dx′y′按升序排列,取K个最小值之和定义为位阶逻辑差:


    其中RK为位阶逻辑差,dk为排序后第k个最小的dx′y′值。根据经验,当窗口W的噪声
    像素比例大于25%时,取窗口W大小为5×5,K=12;当窗口W的噪声像素比例不大于25%时,
    取窗口W大小为3×3,K=4。

    在计算得到每个像素的位阶逻辑差后,可进行极限学习机训练,步骤如下:

    (1)初始化极限学习机。设Xi=[Xi1,Xi2,...,Xin]T∈Rn为第i个输入样本,n为输入
    层节点数,本发明中输入层节点数为2,分别是图像像素值和位阶逻辑差;Ti=[Ti1,Ti2,...,
    Tim]T∈Rm为第i个期望输出,m为输出层节点数,根据样本的种类数确定为2,分别是图像像
    素值和是否是噪声标识,i=1,2,…,N,N为样本数,本发明取100;激活函数为g(x),本发明
    取隐层节点数为L,本发明取L=5。

    (2)随机分配输入权值wj和偏置bj,j=1,2,…5。

    (3)计算隐层节点输出矩阵H。隐层节点输出可表示为:


    其中βj为隐层第j个节点的输出权重,Oi为第i个样本的输出。学习的目标是使得输
    出的误差最?。杭创嬖趙j、Xi、bj,使得


    上式可以矩阵形式表示为:H·β=T。其中:


    β=[β1,β2,...,β5]T,T=[T1,T2,...,T100]T (26)

    当wj和bj被随机确定后,隐层输出矩阵H就能被唯一确定。

    (4)计算隐层输出权重β。根据H·β=T可得到β=H+T,其中H+是H的Moore-Penrose
    广义逆矩阵,可计算得到。

    (5)根据最小化损失函数得到训练输出模型。式(24)的目标函数可表示为:


    上式等价于最小化损失函数:


    其中E为最小损失值,根据上述步骤可得到最优w、β、b作为训练输出模型。

    步骤3:目标图像噪声检测。根据步骤2中训练的到的极限学习机模型对目标图像
    进行检测,得到图像噪声位置。

    步骤4:图像去噪。为弥补传统中值滤波法的不足,本发明采用窗口大小能自适应
    调整的自适应加权平均算法进行图像去噪处理,以加权曲波变换作为重构邻域值,权重采
    用邻域重建偏差进行获取。具体过程如下:

    (1)设窗口Wa大小为Ws×Ws,Ws为不小于3的奇数,初始尺寸设为3×3,窗口的中心
    点是图像I的某个像素。如果中心点不是噪声像素,则移动窗口Wa使中心点落于图像的下一
    个像素;若中心点是噪声像素,则进行下一步骤。

    (2)计算窗口Wa中非噪声像素数num,若则跳到步骤(4);否则进行
    步骤(3)。

    (3)计算自适应窗口大?。篧s=Ws+2,循环执行步骤(2)和(3),直到num值满足跳转
    条件。

    (4)根据num个非噪声像素,计算每个非噪声像素的邻域加权曲波变换作为噪声像
    素窗口的曲波变换,计算公式如下:


    其中Cx,y表示中心为(x,y)的噪声窗口的曲波变换,Ci,x′y′表示(x,y)的窗口内非噪
    声像素点(x′,y′)的邻域窗口的曲波变换,曲波变换计算公式如下:


    其中C(j,l,k)为曲波变换系数,Wa(t)为窗口Wa的图像信号,为基函数,s为尺
    度,o为方向,l为位移。式(29)中wi表示第i个非噪声像素的邻域窗口曲波变换的权重,非噪
    声像素点的邻域重建偏差越小则权重越大,反之则越小。权重计算公式如下:


    其中ηi为第i个非噪声像素的邻域重建偏差。邻域重建偏差用来表示非噪声像素
    的优秀程度,对于优秀程度越高的非噪声像素,对噪声像素的重构贡献度越高。

    非噪声像素的邻域重建偏差计算过程如下:

    (4.1)建立目标函数。以Wx′,y′表示非噪声像素(x′,y′)的邻域窗口,Φ表示确定的
    列数大于行数的超完备字典,Ω表示稀疏表示系数矩阵,则邻域重建目标为提高Ω的稀疏
    化程度使得超完备字典按照稀疏矩阵中的系数线性组合后与原始信号偏差最小,即:

    minΩ||Ω||0 s.t.||Wx′,y′-ΦΩ||<λ (32)

    其中λ为较小常数,本发明中取0.01,||Ω||0表示Ω的l0范数,上式可转化为目标
    函数:


    其中为最优稀疏矩阵,μ为大于0的常数,用来控制稀疏性与保真度之间的平衡
    程度,可根据实际情况选取,本发明中取μ=0.1。

    为了获取更高分辨率的图像,本发明在计算邻域重建偏差时不直接对原始图像信
    号Wx′,y′进行计算,而是以Wx′,y′经过比例放大后的图像信号为对象,
    其中为按比例放大后的图像信号,f(·)为多核自适应插值操作:
    ψ1、ψ2分别是水平和垂直方向上的缩放尺度,本发明取ψ1=2,ψ2=2,E是插值误差,则目标函
    数可转化为:


    对于式(34),计算全局最优是一个NP-hard问题,可通过凸优化方法将非凸问题转
    化为凸问题进行求解,本发明中采用基追踪方法,用l1范数代替l0范数,如下式所示:


    (4.2)计算邻域重建偏差。根据上述步骤得到的最优稀疏矩阵,按照超完备字典表
    进行邻域重建,重建偏差可表示为:


    其中为第i个非噪声像素的邻域窗口按比例放大后的图像信号,为第i个
    非噪声像素的邻域窗口的最优稀疏矩阵。

    (5)曲波反变换得到重构像素。噪声像素窗口的曲波变换进行反变换得到去噪后
    的重构像素,曲波反变换可通过Mat lab的Curvlab包实现。

    步骤5:输出去噪后的图像。

    步骤6:去噪效果评估。计算去噪后的图像与原始图像的峰值信噪比作为图像去噪
    的质量评估标准,峰值信噪比越大,则去噪效果越好,反之则去噪效果越差。对原始图像I和
    去噪后的图像I′,大小均为L1×L2,本发明中测试图像尺寸为512×512,I和I′的均方差为:


    其中MSE为均方差。根据上式可定义峰值信噪比为:


    其中max(I)表示图像点颜色的最大数值,若每个采样点用8位表示,则max(I)为
    255。

    为验证本发明方法的高效可用性,本发明采用医学脑部扫描图像做测试,本发明
    方法与中值滤波方法的峰值信噪比对比结果如表1所示:

    噪声类型
    中值滤波方法
    本发明方法
    高斯噪声
    23.32
    29.77
    椒盐噪声
    21.14
    29.31

    表1

    本发明方法的峰值信噪比高于中值滤波方法,表现出更高的去噪性能。

    图2、图3所示为两种方法的去噪结果图像对比,图2为原始图像加入均值为0、方差
    为0.03的高斯噪声后中值滤波方法和本发明方法的去噪结果,图3为原始图像加入30%椒
    盐噪声后中值滤波方法和本发明方法的去噪结果。从图中可以看出,本发明方法对高斯噪
    声和椒盐噪声的去噪结果都优于中值滤波方法,表现出较高的还原度。

    以上的所述乃是本发明的具体实施例及所运用的技术原理,若依本发明的构想所
    作的改变,其所产生的功能作用仍未超出说明书及附图所涵盖的精神时,仍应属本发明的
    ?;し段?。

    关 键 词:
    一种 基于 极限 学习机 改进 自适应 加权 平均 图像 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:一种基于极限学习机的改进自适应加权平均图像去噪方法.pdf
    链接地址://www.4mum.com.cn/p-6000608.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03