• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 7
    • 下载费用:30 金币  

    重庆时时彩五星趋势图: 一种基于近红外光谱分析技术的烟叶霉变的快速预测方法.pdf

    关 键 词:
    一种 基于 红外 光谱分析 技术 烟叶 霉变 快速 预测 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201510146760.8

    申请日:

    2015.03.31

    公开号:

    CN104713849A

    公开日:

    2015.06.17

    当前法律状态:

    撤回

    有效性:

    无权

    法律详情: 发明专利申请公布后的视为撤回IPC(主分类):G01N 21/359申请公布日:20150617|||实质审查的生效IPC(主分类):G01N 21/359申请日:20150331|||公开
    IPC分类号: G01N21/359(2014.01)I; G01N21/3563(2014.01)I 主分类号: G01N21/359
    申请人: 云南同创检测技术股份有限公司
    发明人: 杨蕾; 侯英; 杨乾栩; 李伟; 杨燕; 杨式华; 王玉; 孔兰芬; 董胜强; 杨盼盼; 王松林
    地址: 650106云南省昆明市高新开发区海源北路1699号
    优先权:
    专利代理机构: 昆明大百科专利事务所53106 代理人: 李云
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201510146760.8

    授权公告号:

    ||||||

    法律状态公告日:

    2017.12.12|||2015.07.15|||2015.06.17

    法律状态类型:

    发明专利申请公布后的视为撤回|||实质审查的生效|||公开

    摘要

    一种基于近红外光谱分析技术的烟叶霉变的快速预测方法,通过近红外光谱分析仪采集不同霉变程度烟叶的近红外光谱,首先应用优劣比值法筛选出对霉变判别贡献大的特征波长;然后应用筛选出来的特征波长建立霉变烟叶的判别模型;最后对待测烟叶样本进行近红外光谱采集和特征波长的提取,再用建立的判别模型来预测该烟叶样本的霉变情况。本发明能够在烟叶未出现明显损伤之前,快速、准确的对烟叶是否霉变进行预测。与现有技术相比,样本无需复杂的前处理、检测速度快、操作简单方便、预测准确率高。

    权利要求书

    权利要求书
    1.  一种基于近红外光谱分析技术的烟叶霉变的快速预测方法,其特征在于,方法步骤如下:
    (1)霉变烟叶样本的制备:选取具有代表性的不同产地、不同品种、不同等级的初烤烟叶,在高湿度环境下存贮加速霉菌生长,制备不同霉变程度的烟叶样本;
    (2)霉变烟叶的分类:通过感官检验并结合霉菌计数方法,对烟叶的霉变情况进行分类,分成正常样品、霉变初期样品、霉变样品三类;分别将正常样品、霉变初期样品、霉变样品直接粉碎过40目筛后,进行近红外光谱采集;
    (3)近红外光谱的采集:通过近红外光谱分析仪分别采集各个样本的近红外光谱,作为各烟叶样本的基础光谱信息;
    (4)原始光谱的特征波长提?。河τ糜帕颖戎捣ù痈餮桃堆镜幕」馄仔畔⒅猩秆〕龈餮桃堆径悦贡渑斜鸸毕状蟮奶卣鞑ǔ?;
    (5)霉变判别模型的建立与验证:应用筛选出来的特征波长采用偏最小二乘法-判别分析方法建立霉变烟叶的判别模型,并应用验证集验证模型的有效性;
    (6)待测烟叶样本霉变情况的预测:对待测的烟叶样本进行近红外光谱采集和特征波长的提取,再用通过有效性验证的模型预测该烟叶样本的霉变情况。

    2.  根据权利要求1所述的一种基于近红外光谱分析技术的烟叶霉变的快速预测方法,其特征在于,步骤(1)中所述在高湿度环境下存贮烟叶,是指在相对湿度80%条件下存储15天。

    3.  根据权利要求1所述的一种基于近红外光谱分析技术的烟叶霉变的快速预测方法,其特征在于,步骤(2)中所述霉变烟叶的分类,正常样品是感官检验和霉菌计数结果均显示为未霉变的样品,霉变初期样品是感官检验未发现霉变现象,但霉菌计数结果显示大于105 CFU/g的样品,霉变样品是感官检验结果为霉变,且霉菌计数结果显示大于106 CFU/g的样品。

    4.  根据权利要求1所述的一种基于近红外光谱分析技术的烟叶霉变的快速预测方法,其特征在于,步骤(3)中所述近红外光谱的采集,仪器的主要工作参数为:光谱扫描范围10000~4000 cm-1,分辨率8 cm-1,扫描次数78次。

    5.  根据权利要求1所述的一种基于近红外光谱分析技术的烟叶霉变的快速预测方法,其特征在于,步骤(4)中,应用优劣比值法方法筛选出的特征波长为9383.5 cm-1、8851.9 cm-1、5457.6 cm-1和4042.0 cm-1。

    说明书

    说明书一种基于近红外光谱分析技术的烟叶霉变的快速预测方法
    技术领域
    本发明涉及烟叶检测技术领域,具体为基于近红外光谱分析技术预测烟叶霉变的方法。
    背景技术
    烟叶霉变是烟叶受霉菌污染的结果。霉菌广泛存在于自然界的空气中,以及烟叶、烟丝上。烟叶中的霉菌只要碰到适宜它生长繁殖的温湿度条件,就会加快生长和繁殖速度,造成烟叶霉变,并迅速蔓延。当烟叶霉变时,霉菌摄取烟叶中的营养物质,破坏其组织结构,分解烟叶的成分,并释放出难闻的气体,致使烟叶彻底失去了使用价值,给卷烟工业企业造成不可挽回的经济损失。同时,从卷烟安全性考虑,霉菌代谢产物中黄曲霉素等霉菌毒素具有极强的致癌性,对人类健康产生危害。因此,对烟叶霉变进行判别是一项极为重要的工作,尤其是在霉变的初期或烟叶还未出现任何损伤时对其进行霉变趋势的预测,并及时采取措施如:将其有效隔离等,并对存贮环境进行通风、除湿、散热等可将烟叶霉变的危害降至最低。
    传统的对烟草霉变的检验主要是通过感官检验、感官评吸法以及微生物计数法。感官检验,是将烟草及烟草制品放在白纸上,通过眼观和鼻嗅,若眼观表面有霉斑,或有白、青色绒毛状物,或鼻嗅有霉味的即为霉变烟草及烟草制品。若烟草及烟草制品样品无霉斑或无明显霉味,但水分或包/箱温异常,可进一步制样后通过感官评吸判别是否有霉味。常规的霉菌计数方法以培养基培养,肉眼观察,必要时可用放大镜,记录各稀释倍数和相应的霉菌数,以菌落形成单位(colony forming units,CFU)表示。这些方法存在严重依赖于人的感官、检测效率低、所需时间长等问题,且不能在霉变初期及时对烟叶霉变情况进行预测。因此,研究快速准确的烟叶霉变预测方法非常重要。
    发明内容
    本发明的目的是提供一种能够对烟叶霉变进行快速预测的方法,以解决现有技术中烟叶霉变检测时间长,难以在霉变初期及时对烟叶霉变情况进行预测的技术问题。
    本发明的目的通过如下技术方案实现。
    一种基于近红外光谱分析技术的烟叶霉变的快速预测方法,方法步骤如下:
    (1)霉变烟叶样本的制备:选取具有代表性的不同产地、不同品种、不同等级的初烤烟叶,在高湿度环境下存贮加速霉菌生长,制备不同霉变程度的烟叶样本;
    (2)霉变烟叶的分类:通过感官检验并结合霉菌计数方法,对烟叶的霉变情况进行分类,分成正常样品、霉变初期样品、霉变样品三类;分别将正常样品、霉变初期样品、霉变样品直接粉碎过40目筛后,进行近红外光谱采集;
    (3)近红外光谱的采集:通过近红外光谱分析仪分别采集各个样本的近红外光谱,作为各烟叶样本的基础光谱信息;
    (4)原始光谱的特征波长提?。河τ糜帕颖戎捣ù痈餮桃堆镜幕」馄仔畔⒅猩秆〕龈餮桃堆径悦贡渑斜鸸毕状蟮奶卣鞑ǔ?;
    (5)霉变判别模型的建立与验证:应用筛选出来的特征波长采用偏最小二乘法-判别分析方法建立霉变烟叶的判别模型,并应用验证集验证模型的有效性;
    (6)待测烟叶样本霉变情况的预测:对待测的烟叶样本进行近红外光谱采集和特征波长的提取,再用通过有效性验证的模型预测该烟叶样本的霉变情况。
    上述步骤(1)中所述在高湿度环境下存贮烟叶,是指在相对湿度80%条件下存储15天。步骤(2)中所述霉变烟叶的分类,正常样品是感官检验和霉菌计数结果均显示为未霉变的样品,霉变初期样品是感官检验未发现霉变现象,但霉菌计数结果显示大于105 CFU/g的样品,霉变样品是感官检验结果为霉变,且霉菌计数结果显示大于106 CFU/g的样品。步骤(3)中所述近红外光谱的采集,仪器的主要工作参数为:光谱扫描范围10000~4000 cm-1,分辨率8 cm-1,扫描次数78次。步骤(4)中,应用优劣比值法方法筛选出的特征波长为9383.5 cm-1、8851.9 cm-1、5457.6 cm-1和4042.0 cm-1。
    本发明方法所建立的模型能够快速、准确的对霉变初期的烟叶进行预测。与现有技术相比,样本无需复杂的前处理、检测速度快、操作简单方便、预测准确率高。
    附图说明
    图1是本发明实施例所采集的近红外光谱图;
    图2是实施例的God2Bad值;
    图3是实施例中特征波长的变化规律;
    图4是实施例预测组样本的主成分得分图。
    具体实施方式
    为使本发明实施例的目的、技术方案和有点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
    一种基于近红外光谱分析技术的烟叶霉变的快速预测方法,方法步骤如下:
    (1)霉变烟叶样本的制备
    选取1124个来源于不同产地、不同品种、不同等级的初烤烟叶。选取其中523个,放置于80%湿度环境下以加速霉菌的生长;剩余的601个放置于20%湿度环境下避光保存。霉变烟叶样本的制备包括不同产地、不同品种、不同等级烟叶的选择,以充分考虑到产地、品种、等级不同,烟叶中霉菌的种类和数量不同,对烟叶霉变带来的不同影响;
    (2)霉变烟叶的分类
    15天后,存放在80%湿度环境下的523个烟叶表现出不同程度的霉变;而存放在20%湿度环境下的601个烟叶表面没有霉菌生长。通过传统的感官检验并结合霉菌计数方法,对烟叶霉变情况分为3个类别:第1类:592个,正常样品,其感官检验和霉菌计数结果均显示为未霉变;第2类:174个,霉变初期样品,其感官检验未发现霉变现象,但霉菌计数结果显示大于105 CFU/g;第3类:188个,霉变样品,其感官检验结果为霉变,且霉菌计数结果显示大于106 CFU/g。分别将正常样品、霉变初期样品、霉变样品直接粉碎过40目筛后,进行近红外光谱采集;
    (3)近红外光谱的采集
    通过近红外光谱分析仪分别采集各个样本的近红外光谱,作为各烟叶样本的基础光谱信息,该光谱能够反映霉变烟叶的整体化学信息。仪器的主要工作参数为:光谱扫描范围10000~4000 cm-1,分辨率8 cm-1,扫描次数78次。图1为正常烟叶和霉变烟叶的近红外光谱图,图2为正常烟叶和霉变烟叶近红外光谱的优劣比值图。
    (4)原始光谱的特征波长提取
    应用优劣比值法(God2Bad法)从各烟叶样本的基础光谱信息中筛选出各烟叶样本对霉变判别贡献大的特征波长;筛选出的特征波长为9383.5 cm-1、8851.9 cm-1、5457.6 cm-1和4042.0 cm-1。本实施例中4个特征波长的变化规律如图3所示。
    (5)霉变判别模型的建立与验证:
    将所有样本随机分为训练组和预测组,其中训练组924个样本用于模型的建立,预测组200个样本用于模型预测效果的验证。应用筛选出来的特征波长,采用偏最小二乘法-判别分析方法(PLS-DA方法)建立霉变烟叶的判别模型,并应用验证集验证模型的有效性;
    (6)待测烟叶样本霉变情况的预测:对待测的烟叶样本进行近红外光谱采集和特征波长的提取,再用通过有效性验证的模型预测该烟叶样本的霉变情况,根据模型预测值实现对预测组烟叶样本进行霉变的判定,见图4。结果表明,判别准确率可达95.8%,应用本方法可实现烟叶霉变初期的快速、准确预测。
    本发明所描述的实施例是本发明一部分实施例,而不是全部实施例?;诒痉⒚髦械氖凳├?,本领域其它技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明?;さ姆段?。

    关于本文
    本文标题:一种基于近红外光谱分析技术的烟叶霉变的快速预测方法.pdf
    链接地址://www.4mum.com.cn/p-5890724.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 北京pk拾网址 网易买老时时行吗 快乐8稳赚和值单双 3d稳赚 重庆时时个人技巧经验 11选5一胆全托 pk10走势图怎么看 重庆欢乐生肖开奖结果 手机版必赢客软件官网 玩彩票稳赚的套路 快乐时时开奖查询结果 幸运飞艇全部软件 黑客能不能破解棋牌游戏 老时时开奖统计 买什么是稳赚不赔 258竞彩网