• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 22
    • 下载费用:30 金币  

    怎样玩好重庆时时彩: 车辆计数方法和装置.pdf

    关 键 词:
    车辆 计数 方法 装置
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201110159578.8

    申请日:

    2011.06.14

    公开号:

    CN102231236A

    公开日:

    2011.11.02

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||实质审查的生效IPC(主分类):G08G 1/065申请日:20110614|||公开
    IPC分类号: G08G1/065; G06K9/00; G06K9/38 主分类号: G08G1/065
    申请人: 汉王科技股份有限公司
    发明人: 黄磊; 刘昌平; 杨永辉
    地址: 100193 北京市海淀区东北旺西路8号5号楼三层
    优先权:
    专利代理机构: 代理人:
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201110159578.8

    授权公告号:

    102231236B||||||

    法律状态公告日:

    2014.08.27|||2011.12.14|||2011.11.02

    法律状态类型:

    授权|||实质审查的生效|||公开

    摘要

    本发明实施例公开了一种车辆计数方法和装置,涉及智能交通监控领域,克服了车辆计数不准确的问题。本发明的方法包括:根据视频图像的灰度直方图对应的相关系数,确定车辆的计数模式,当白天模式时,利用预设的第一虚拟线圈进行运动检测和/或边缘检测以及利用预设的第二虚拟线圈进行车头检测,从而对视频图像中的车辆进行识别,并进行车辆计数;当夜晚模式时,利用预设的第三虚拟线圈进行车灯检测和车灯匹配,从而对视频图像中的车辆进行识别,并进行车辆计数。本发明实施例根据视频图像灰度直方图的相关系数,确定车辆计数的计数模式,所述计数模式包括白天模式和夜晚模式,根据确定的计数模式,调用对应的车辆计数方法,提高了车辆计数的准确率。

    权利要求书

    1.一种车辆计数方法,其特征在于,包括:根据视频图像的灰度直方图对应的相关系数,确定车辆的计数模式,所述计数模式包括白天模式和夜晚模式;当白天模式时,利用预设的第一虚拟线圈进行运动检测和/或边缘检测以及利用预设的第二虚拟线圈进行车头检测,从而对视频图像中的车辆进行识别,并进行车辆计数,所述第二虚拟线圈包含所述第一虚拟线圈;?当夜晚模式时,利用预设的第三虚拟线圈进行车灯检测和车灯匹配,从而对视频图像中的车辆进行识别,并进行车辆计数。2.根据权利要求1所述的车辆计数方法,其特征在于,所述利用预设的第一虚拟线圈进行运动检测和/或边缘检测以及利用预设的第二虚拟线圈进行车头检测,从而对视频图像中的车辆进行识别,并进行车辆计数,包括:通过运动检测确定当前帧视频图像中所述第一虚拟线圈中是否存在运动车辆;若检测到所述第一虚拟线圈中存在运动车辆,并且上一帧视频图像中不存在车辆,则将车辆计数加1;若检测到所述第一虚拟线圈中存在运动车辆,并且上一帧视频图像中有车辆,则通过车头检测确定所述第二虚拟线圈中是否有车头;若确定所述第二虚拟线圈中有车头,并且上一帧视频图像中没有车头,则将车辆计数加1;若所述第一虚拟线圈中不存在运动车辆,则通过边缘检测确定当前帧视频图像中所述第一虚拟线圈中是否有车辆存在,若无车辆存在,则不对车辆进行计数。3.根据权利要求2所述的车辆计数方法,其特征在于,所述通过车头检测确定所述第二虚拟线圈中是否为车头,包括:获取所述第二虚拟线圈中的车辆的梯度直方图特征,根据所述梯度直方图特征确定所述虚拟线圈中是否为车头。4.根据权利要求1所述的车辆计数方法,其特征在于,所述利用预设的第三虚拟线圈进行车灯检测和车灯匹配,从而对视频图像中的车辆进行识别,并进行车辆计数,包括:利用车灯检测对视频图像中的干扰光源进行过滤,确定所述视频图像中的车灯;根据预定义的车辆车灯参数对所述视频图像中的车灯进行匹配,确定待计数车辆;当所述待计数车辆的车灯通过所述第三虚拟线圈时,车辆计数加1。5.根据权利要求4所述的车辆计数方法,其特征在于,所述利用车灯检测将视频图像中的干扰光源过滤,确定所述视频图像中的车灯,包括:对所述视频图像进行二值化处理,得到二值图像;将所述二值图像进行腐蚀膨胀运算;将腐蚀膨胀运算后的二值图像进行连通域分析,得到各连通域的外接矩形;通过所述外接矩形的高度和宽度确定所述视频图像中的车灯。6.根据权利要求5所述的车辆计数方法,其特征在于,在通过所述外接矩形的高度和宽度确定所述视频图像中的车灯之后,还包括:计算所述外接矩形的高宽比;根据所述外接矩形的高宽比对所述视频图像中的车灯进行进一步过滤,得到过滤后的所述视频图像中的车灯。7.根据权利要求4所述的车辆计数方法,其特征在于,所述预定义的车辆车灯参数包括:车灯大小的相似性、车灯间的距离、车灯中心坐标的相对位置。8.根据权利要求4所述的车辆计数方法,其特征在于,根据预定义的车辆车灯参数对所述确定的视频图像中的车灯进行匹配,确定待计数车辆之前,?还包括:根据预定车道的范围,确定所述视频图像中每个预定车道上的车灯。9.一种车辆计数装置,其特征在于,包括:计数模式确定单元,用于根据视频图像灰度直方图的相关系数,确定车辆的计数模式,所述计数模式包括白天模式和夜晚模式;第一计数单元,用于当白天模式时,利用预设的第一虚拟线圈进行运动检测和/或边缘检测以及利用预设的第二虚拟线圈进行车头检测,从而对视频图像中的车辆进行识别,并进行车辆计数,所述第二虚拟线圈包含所述第一虚拟线圈;?第二计数单元,用于当夜晚模式时,利用预设的第三虚拟线圈进行车灯检测和车灯匹配,从而对视频图像中的车辆进行识别,并进行车辆计数。10.根据权利要求9所述的车辆计数装置,其特征在于,所述第一计数单元包括:运动检测???,用于通过运动检测确定当前帧视频图像中第一虚拟线圈中是否存在运动车辆;第一计数???,用于在所述运动检测??榧觳獾剿龅谝恍槟庀呷χ写嬖谠硕盗?,并且所述上一帧视频图像中没有计数车辆时,将车辆计数加1;车头检测???,用于在所述运动检测??榧觳獾剿龅谝恍槟庀呷χ写嬖谠硕盗?,并且所述上一帧视频图像中有计数车辆时,通过车头检测确定第二虚拟线圈中是否有车头;所述第一计数??榛褂糜?,在所述车头检测单元确定所述第二虚拟线圈中有车头,并且所述上一帧视频图像中不存在车头时,将车辆计数加1;边缘检测???,用于在所述运动检测??榧觳獾剿鲂槟庀呷χ胁淮嬖谠硕盗臼?,通过边缘检测确定当前帧视频图像中是否有车辆存在;所述第一计数??榛褂糜?,在所述边缘检测??榧觳獾降鼻爸∈悠低枷裰形蕹盗敬嬖?,不对车辆进行计数。11.根据权利要求10所述的车辆计数装置,其特征在于,所述车头检测??橛糜?,获取所述第二虚拟线圈中的车辆的梯度直方图特征,根据所述梯度直方图特征确定所述虚拟线圈中是否有车头。12.根据权利要求9所述的车辆计数装置,其特征在于,所述第二计数单元包括:车灯确定???,用于利用车灯检测对视频图像中的干扰光源进行过滤,确定所述视频图像中的车灯;车辆确定???,用于根据预定义的车辆车灯参数对所述车灯确定??槿范ǖ氖悠低枷裰械某档平衅ヅ?,确定待计数车辆;第二计数???,用于当所述车辆确定??槿范ǖ乃龃剖盗镜某档仆ü谌槟庀呷κ?,车辆计数加1。13.根据权利要求12所述的车辆计数装置,其特征在于,所述第二计数单元还包括:车道确定???,用于当标定预定车道时,在所述车辆确定??楦菰ざㄒ宓某盗境档撇问运鋈范ǖ氖悠低枷裰械某档平衅ヅ?,确定待计数车辆之前,根据预定车道的范围,确定所述视频图像中每个预定车道上的车灯。

    说明书

    车辆计数方法和装置

    技术领域

    本发明涉及智能交通监控领域,尤其涉及一种车辆计数方法和装
    置。

    背景技术

    随着城市化进程的逐步加快,交通拥堵已经变得越来越严重,导
    致事故发生率变高,加剧了环境污染,造成资源浪费,给人们的出行
    带来极大不便。面对交通拥堵和有限的土地经济资源,智能交通系统
    (Intelligent?Transport?System,ITS)将传感技术、信号处理技
    术、控制技术等现代信息技术与交通工程综合应用,最大限度地发挥
    交通基础设施的潜力,并引导合理的交通行为。其中车辆计数是ITS
    的重要???,传统的车辆计数方法是在道路下面铺设磁感应线圈,每
    一辆车通过都会产生一个电磁信号,监测该电磁信号判断是否有车通
    过,从而实现车辆计数。这种方法虽然实现了车辆计数的功能,但是
    由于磁感应线圈的铺设需要现场施工,线圈投资大,施工面积大,耗
    费大量人力物力,所以安装成本很高。

    为了解决安装成本高的问题,目前使用一种基于视频分析的虚拟
    线圈技术,该技术通过摄像头采集到的道路交通视频来进行车辆计
    数。具体的,在道路交通视频中的每个车道设置虚拟线圈,采用自适
    应背景建模技术对线圈中的信息做一系列图像处理和视频分析,从而
    识别线圈中通过的车辆,实现车辆计数。由于大部分的城市道路都已
    经安装了监控摄像头,所需要的道路交通视频可直接由监控摄像头提
    供,即使要重新安装摄像头,其安装调试过程简单,也不需要大面积
    施工,不需要投入大量人力物力,解决了安装成本高的问题。

    在实现上述基于虚拟线圈的车辆计数的过程中,现有技术中至少
    存在如下问题:由于仅通过简单的背景建模的方法对车辆进行识别,
    当车辆在粘连遮挡时,无法准确分隔单个车辆,从而造成漏检,使得
    车辆计数不准确;并且当车辆因拥堵时动时停时,同一个车辆模型会
    多次在虚拟线圈内移动,导致对同一车辆重复计数,同样使得车辆计
    数不准确。尤其是夜晚光线很暗、有多种干扰光源和路面反光的情况
    下,上述问题更为显著。

    发明内容

    本发明的实施例提供一种车辆计数方法和装置,克服了车辆计数
    不准确的问题。

    为达到上述目的,本发明的实施例采用如下技术方案:

    一种车辆计数方法,包括:

    根据视频图像的灰度直方图对应的相关系数,确定车辆的计数模
    式,所述计数模式包括白天模式和夜晚模式;

    当白天模式时,利用预设的第一虚拟线圈进行运动检测和/或边
    缘检测以及利用预设的第二虚拟线圈进行车头检测,从而对视频图像
    中的车辆进行识别,并进行车辆计数,所述第二虚拟线圈包含所述第
    一虚拟线圈;

    当夜晚模式时,利用预设的第三虚拟线圈进行车灯检测和车灯匹
    配,从而对视频图像中的车辆进行识别,并进行车辆计数;

    所述利用预设的第一虚拟线圈进行运动检测和/或边缘检测以及
    利用预设的第二虚拟线圈进行车头检测,从而对视频图像中的车辆进
    行识别,并进行车辆计数,包括:通过运动检测确定当前帧视频图像
    中所述第一虚拟线圈中是否存在运动车辆;若检测到所述第一虚拟线
    圈中存在运动车辆,并且上一帧视频图像中不存在车辆,则将车辆计
    数加1;若检测到所述第一虚拟线圈中存在运动车辆,并且上一帧视
    频图像中不存在车辆,则通过车头检测确定所述第二虚拟线圈中是否
    有车头;若确定所述第二虚拟线圈中有车头,并且上一帧视频图像中
    没有车头,则将车辆计数加1;

    若所述第一虚拟线圈中不存在运动车辆,则通过边缘检测确定当
    前帧视频图像中所述第一虚拟线圈中是否有车辆存在,若无车辆存
    在,则不对车辆进行计数。所述利用预设的第三虚拟线圈进行车灯检
    测和车灯匹配,从而对视频图像中的车辆进行识别,并进行车辆计数,
    包括:

    利用车灯检测对视频图像中的干扰光源进行过滤,确定所述视频
    图像中的车灯;

    根据预定义的车辆车灯参数对所述视频图像中的车灯进行匹配,
    确定待计数车辆;

    当所述待计数车辆的车灯通过所述第三虚拟线圈时,车辆计数加
    1。

    一种车辆计数装置,包括:

    计数模式确定单元,用于根据视频图像灰度直方图的相关系数,
    确定车辆的计数模式,所述计数模式包括白天模式和夜晚模式;

    第一计数单元,用于当白天模式时,利用预设的第一虚拟线圈进
    行运动检测和/或边缘检测以及利用预设的第二虚拟线圈进行车头检
    测,从而对视频图像中的车辆进行识别,并进行车辆计数,所述第二
    虚拟线圈包含所述第一虚拟线圈;

    第二计数单元,用于当夜晚模式时,利用预设的第三虚拟线圈进
    行车灯检测和车灯匹配,从而对视频图像中的车辆进行识别,并进行
    车辆计数。

    所述第一计数单元进一步包括:运动检测???,用于通过运动检
    测确定当前帧视频图像中第一虚拟线圈中是否存在运动车辆;第一计
    数???,用于在所述运动检测??榧觳獾剿龅谝恍槟庀呷χ写嬖谠?br />动车辆,并且所述上一帧视频图像中不存在计数车辆时,将车辆计数
    加1;车头检测???,用于在所述运动检测??榧觳獾剿龅谝恍槟?br />线圈中存在运动车辆,并且所述上一帧视频图像中有计数车辆时,通
    过车头检测确定第二虚拟线圈中是否有车头;

    所述第一计数??榛褂糜?,在所述车头检测单元确定所述第二虚
    拟线圈中有车头,并且所述上一帧视频图像中没有车头时,将车辆计
    数加1;

    边缘检测???,用于在所述运动检测??榧觳獾剿鲂槟庀呷χ?br />不存在运动车辆时,通过边缘检测确定当前帧视频图像中是否有车辆
    存在;

    所述第一计数??榛褂糜?,在所述边缘检测??榧觳獾降鼻爸∈?br />频图像中没有车辆存在,则车辆计数不加1。

    所述第二计数单元进一步包括:车灯确定???,用于利用车灯检
    测对视频图像中的干扰光源进行过滤,确定所述视频图像中的车灯;
    车辆确定???,用于根据预定义的车辆车灯参数对所述车灯确定???br />确定的视频图像中的车灯进行匹配,确定待计数车辆;第二计数???,
    用于当所述车辆确定??槿范ǖ乃龃剖盗镜某档仆ü谌?br />拟线圈时,车辆计数加1。所述第二计数单元还包括:

    车道确定???,用于当标定预定车道时,在所述车辆确定??楦?br />据预定义的车辆车灯参数对所述确定的视频图像中的车灯进行匹配,
    确定待计数车辆之前,根据预定车道的范围,确定所述视频图像中每
    个预定车道上的车灯。

    本发明实施例提供的基于虚拟线圈的车辆计数方法和装置,白天
    采用运动检测、边缘检测和车头检测相结合的算法,将车辆以车头为
    标识逐个分隔开,避免了在车辆拥堵而时动时停和车辆粘连时的重复
    计数和漏检,实现了车辆的准确计数。在夜晚光照复杂的环境下,利
    用车灯这一车辆显著特征,采用一套简单有效的车灯检测和车灯匹配
    算法过滤干扰光源,将车辆以车灯为标识逐个分隔开,通过判断虚拟
    线圈中有车灯或无车灯的状态变化实现车辆准确计数。

    附图说明

    为了更清楚地说明本发明实施例或现有技术中的技术方案,下面
    将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而
    易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域
    普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些
    附图获得其他的附图。

    图1为本发明实施例1中车辆计数的方法流程图;

    图2为本发明实施例1中第一虚拟线圈和第二虚拟线圈的放置示
    意图;

    图3为本发明实施例1中第三虚拟线圈的放置示意图;

    图4为本发明实施例1中白天车辆计数的方法流程图;

    图5为本发明实施例1中夜晚车辆计数的方法流程图;

    图6为本发明实施例2中一种车辆计数装置的组成结构框图;

    图7为本发明实施例2中一种车辆计数装置的组成框图;

    图8为本发明实施例2中另一种车辆计数装置的组成框图;

    图9为本发明实施例2中又一种车辆计数装置的组成框图。

    具体实施方式

    下面将结合本发明实施例中的附图,对本发明实施例中的技术方
    案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部
    分实施例,而不是全部的实施例?;诒痉⒚髦械氖凳├?,本领域普
    通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,
    都属于本发明?;さ姆段?。

    实施例1

    本发明实施例提供一种车辆计数方法,如图1所示,该方法包括:

    101、根据视频图像的灰度直方图对应的相关系数,确定车辆的
    计数模式,所述计数模式包括白天模式和夜晚模式。

    需要说明的是,由于亮度不同,白天和夜晚场景的灰度直方图分
    布存在较大差异,白天图像的灰度值集中在中值附近,而夜晚图像的
    灰度值集中在灰度较小的一段或在车灯等光源较多的情况灰度值分
    布在直方图两端。采用k最近邻法(k?Nearest?Neighbors,kNN),
    利用灰度直方图的相关系数作为距离值,实现白天夜晚的判别算法。
    相关系数ρ是图像之间相似程度的指标,取值范围为[-1,1],根据视
    频图像的灰度直方图对应的相关系数就可以判断出当前视频图像采
    集于白天模式或夜晚模式。

    在根据视频图像的灰度直方图对应的相关系数进行白天模式和
    夜晚模式的判断时,首先要创建白天模式和夜晚模式的灰度直方图样
    本集。例如,每隔10分钟选取一张图片,标记白天和夜晚的类别分
    别为0和1,计算它们的灰度直方图,得到样本集H,h为其中的样
    本。从视频中选取一帧图像f,计算其灰度直方图Hf。再计算视频图
    像直方图Hf与样本直方图h的相关系数ρ(Hf,h),并选取k个相关系
    数最大的样本h,看这几个相关系数大的样本所对应的类别。k个样
    本中的每个样本都用代表白天和夜晚的0或1表示,记为
    label(i),i=1...k,k可以取3或5等。将这些代表类别的1或0求和得
    到再除以k求得相对于每个样本的平均值。若该平均
    值大于0.5则为夜晚,小于或等于0.5则为白天。

    本发明实施例仅举例说明黑夜白天判别算法的具体公式,实际实
    现过程中可以将公式做类似的改变,不用付出创造性劳动即可实现黑
    夜白天的判别,其他多种算法这里不再赘述。

    102、当白天模式时,利用预设的第一虚拟线圈进行运动检测和/
    或边缘检测以及利用预设的第二虚拟线圈进行车头检测,从而对视频
    图像中的车辆进行识别,并进行车辆计数。

    其中,该运动检测可以采用帧差法,该帧差法是一种计算量小并
    方便实现的运动检测算法,例如可以采用二帧差或三帧差等帧差法,
    当采用二帧差时,具体的,先计算出视频序列连续两帧图像的像素差,
    然后进行二值化处理,之后采用大津法(Otsu算法,日本大津发明
    的自适应阈值确定方法)确定阈值,大于阈值的点就是运动像素点,
    由所述运动像素点组成的图像就是二值化运动图像。帧差法得到的二
    值化运动图像,当虚拟线圈中的运动像素点个数占虚拟线圈中总像素
    点个数的比例达到预定义值,便可判断虚拟线圈中有运动车辆。

    其中,该边缘检测可以采用形态学边缘检测算法,该形态学边缘
    检测算法是一种噪声干扰小、鲁棒性强的边缘检测算法,具体的,先
    将图像进行二值化和中值滤波,然后进行膨胀和腐蚀操作,计算腐蚀
    膨胀差得到边缘图像,同样采用Otsu算法确定阈值,大于阈值的像
    素点便组成了二值化的边缘图像。由于没有车的路面基本不存在边缘
    信息,而有车的路面会存在大量的边缘信息,所以通过边缘检测可以
    确定第一虚拟线圈中是否有车辆存在。

    其中,该车头检测可以采用支持向量机(Support?Vector?
    Machine,SVM)分类器辨别车头与其他图形,具体的,先准备大量的
    训练样本,正样本为车头图片,负样本为不含车头的其他图片如车身
    和路面图片,然后提取样本的梯度直方图(Histogram?of?Oriented?
    Gradients,HOG)特征,进行SVM分类器训练。在实际车头检测时,
    先提取待分类图片的HOG特征,然后利用训练好的SVM分类器进行类
    别判断,确定是否为车头。

    进行车辆计数之前,如图2所示,在每一个待计数的车道上各放
    置两个虚拟线圈,第一虚拟线圈和第二虚拟线圈,第一虚拟线圈为小
    线圈,第二虚拟线圈为大线圈,第二虚拟线圈的检测范围包含第一虚
    拟线圈的检测范围。需要说明的是,虚拟线圈的放置方式并不仅限于
    图示方法,其他的放置方式本发明实施例这里将不再赘述。其中,虚
    拟线圈的计数方法为:第一虚拟线圈用于运动检测和边缘检测,第二
    虚拟线圈用于提取梯度直方图HOG特征进行车头检测。若检测到第一
    虚拟线圈中存在运动车辆,并且视频上一帧的第一虚拟线圈中没有车
    辆,也就是说第一虚拟线圈中从没有车辆变成有车辆,则将车辆计数
    加1。若检测到第一虚拟线圈中存在运动车辆,并且视频上一帧的第
    一虚拟线圈中有车辆,则通过车头检测确定第二虚拟线圈中是否有车
    头。若确定第二虚拟线圈中有车头,并且上一帧视频图像中没有车头,
    则说明上一帧视频图像中存在的车辆是已计数的车身,而本次检测到
    的车头是待计数车辆的车头,则将车辆计数加1。反之,若检测到虚
    拟线圈中存在运动车辆并且上一帧也存在车辆,但本次检测到的没有
    车头或者本次检测到有车头而上一帧也有车头,则视本次检测到的运
    动车辆仍为上一帧的车辆且已在上次检测中计数,遂不再重复计数。
    若检测到第一虚拟线圈中不存在运动车辆,则不计数,并通过边缘检
    测确定是否有车辆存在,以便下一帧的检测和计数。

    步骤102的具体实施方法如图4所示,包括:

    10201、初始化虚拟线圈的检测值,令nCar为0,IsCar为False,
    IsHead为False。

    其中nCar为已计数车辆的个数,IsCar表示上一帧视频图像中
    的第二虚拟线圈中是否检测到有车辆存在,IsHead表示上一帧视频
    图像中的第二虚拟线圈中是否检测到车头。初始状态下可设置没有计
    数车辆,并没有检测到车以及车头。若已有正确的检测结果,例如中
    间暂停视频等则跳过该初始化的过程。本实施例仅提供一种定义和赋
    值方式,不排除其他合理的定义和赋值方式。

    10202、读取视频图像。

    10203、通过运动检测确定当前视频图像帧中第一虚拟线圈中是
    否存在运动车辆;若该第一虚拟线圈存在运动车辆,则执行步骤
    10204;若该第一虚拟线圈中不存在运动车辆,则执行步骤10206。

    其中,该运动检测可以采用帧差法,该帧法是一种计算量小并方
    便实现的运动检测算法。例如采用帧差法中的三帧差法,具体的,先
    从视频图像中读取连续三帧图像,分别处理成灰度图g1、g2和g3,
    然后分别计算相邻两帧图像的像素差。为了减小噪声,需要对差分图
    像进行阈值化。其中,对差分图像进行阈值化可以采用Otsu算法确
    定阈值,大于阈值的点就是运动像素点,由所述运动像素点组成的图
    像就是二值化运动图像,得到二值化运动图像g12和g23。再将g12
    和g23在每一个像素点逻辑相“与”,得到三帧差的二值化运动图像。
    帧差法得到的二值化运动图像,当虚拟线圈中的运动像素点个数占虚
    拟线圈中总像素点个数的比例达到预定义值,便可判断虚拟线圈中有
    运动车辆。

    10204、判断上一帧视频图像中是否有已计数车辆,即判断IsCar
    是否为True;若IsCar为False,说明上一帧视频图像中没有已计数
    车辆,执行步骤10205;若IsCar为True,说明上一帧视频图像中有
    已计数车辆,执行步骤10208。

    10205、车辆计数加1,即nCar++,且令IsCar为True,IsHead
    为True,然后返回步骤10202。

    需要说明的是,在对车辆计数的同时,要给IsCar和IsHead赋
    值,以记录当前帧的检测状态,表示本次检测到的运动车辆已被计数,
    以免因拥堵导致下一帧检测到同一车辆而重复计数。

    10206、通过边缘检测确定是否有车辆存在;若有车辆存在,则
    不执行任何操作返回步骤10202;若无车辆存在,则执行步骤10207。

    其中,该边缘检测可以采用形态学边缘检测算法,该形态学边缘
    检测算法的一种噪声干扰小、鲁棒性强的边缘检测算法,具体的,先
    将图像进行二值化和中值滤波,然后进行膨胀和腐蚀操作,计算腐蚀
    膨胀差得到边缘图像,同样采用Otsu算法确定阈值,大于阈值的像
    素点便组成了二值化的边缘图像。由于没有车的路面基本不存在边缘
    信息,而车辆会存在大量的边缘信息,所以通过边缘检测可以确定当
    前视频图像帧中第一虚拟线圈中是否有车辆存在。

    10207、记录当前未检测到车辆存在,令IsCar为False,然后
    返回步骤10202。

    需要说明的是,通过步骤10206中边缘检测已确定当前帧视频图
    像在第一虚拟线圈中没有车辆存在,则要给IsCar赋值,以记录该帧
    视频图像中是否有车的状态,以便下一次检测中检测到运动车辆时进
    行计数。

    10208、获取第二虚拟线圈中的车辆的梯度直方图Hog特征,根
    据所述Hog特征确定第二虚拟线圈中是否有车头;若确定该第二虚拟
    线圈中有车头,则执行步骤10209;若确定该第二虚拟线圈中没有车
    头,则执行步骤10211。

    其中,车头检测可以采用SVM分类器辨别车头与其他图形,具体
    的,包括两个阶段:SVM分类器训练和车头与其他图片分类。首先准
    备大量的训练样本,正样本为车头图片,负样本为不含有车头的其他
    图片如车身和路面图片,然后提取样本的HOG特征,用HOG特征对
    SVM分类器进行训练。在实际车头检测时,先提取待分类图片的HOG
    特征,然后利用训练好的SVM分类器进行类别判断,确定是否为车头。
    其中,HOG特征提取和SVM分类器是现有技术,本发明实施例这里将
    不再赘述。

    10209、判断上一帧视频图像中是否有车头,即判断IsHead是否
    为True;若此时IsHead为True,则说明上一帧视频图像中检测到有
    车头,则不执行任何操作返回步骤10202;若此时IsHead为False,
    则说明上一帧视频图像中没有检测到车头,执行步骤10210。

    其中,IsHead为True说明上一帧视频图像中检测到有车头,而
    本次检测到的仍为车头,则说明上一帧视频图像中已经计数的车辆因
    行驶缓慢仍然停留在第二虚拟线圈中,被再次检测到,遂不予重复计
    数。IsHead为False说明上一帧视频图像中没有检测到车头,而本
    次检测到有车头,则说明已经有一辆未计数的车辆车头驶入了第二虚
    拟线圈中,应予以计数。

    10210、车辆计数加1,即nCar++,并令IsHead为True,然后
    返回步骤10202。

    其中,通过步骤10209已经确定有一辆未计数的车辆车头驶入第
    二虚拟线圈,予以计数。并且要给IsHead赋值,记录当前已检测到
    的车头且已经被计数,从而避免因拥堵导致视频图像下一帧检测到同
    一车辆的车头而重复计数。

    10211、记录当前检测到的运动不是车头,令IsHead为False,
    然后返回步骤10202。

    其中,通过步骤10208已经确定当前检测到的运动不是车头,说
    明当前的运动仍是上一帧视频图像已经计数的运动车辆,因为行驶缓
    慢而停留在第二虚拟线圈中被再次检测到,不应重复计数。并且要给
    IsHead赋值,记录当前检测到的不是车头,这样下一次检测到车头
    时,就能确定一辆待计数的车头驶入了第二虚拟线圈,以便下一次计
    数。

    103、当夜晚模式时,利用预设的第三虚拟线圈进行车灯检测和
    车灯匹配,从而对视频图像中的车辆进行识别,并进行车辆计数。

    其中,车灯检测是先将灰度图像进行二值化处理,再将二值化图
    像进行腐蚀膨胀运算,以去掉小的噪声,得到计数时所关心的结构元
    素,并对这些结构元素进行连通域分析,得到连通域的外接矩形,再
    由矩形的高宽值及其比例过滤掉干扰光源,从而确定视频图像中的车
    灯。

    其中,车灯匹配是指根据预定义的车辆车灯参数如相似性、对称
    性、车灯间距离以及车灯中心坐标的相对位置等对视频图像中的车灯
    进行匹配,符合要求的车灯确定为待计数车辆的车灯。上述参数值均
    为根据视频图像所预先定义的经验值。

    在进行车辆计数之前,如图3所示,在视频图像中每一个待计数
    的车道上放置一个虚拟线圈,即第三虚拟线圈。其中,虚拟线圈的计
    数方法为,在虚拟线圈内判断是否有车灯,车灯从无到有的状态变化
    说明有待计数的车辆驶入虚拟线圈,车灯从有到无的状态说明一辆已
    计数的车辆车灯离开了虚拟线圈。待计数车辆的车灯每通过虚拟线圈
    一次,都触发一次计数。

    其中,预设第三虚拟线圈的方法如图3所示,在视频图像中每一
    个待计数的车道上放置一个虚拟线圈,即第三虚拟线圈;虚拟线圈的
    计数方法为,在虚拟线圈内判断是否有车灯,车灯从无到有的状态变
    化说明有待计数的车辆驶入虚拟线圈,车灯从有到无的状态说明一辆
    已计数的车辆车灯离开了虚拟线圈。待计数车辆的车灯每通过虚拟线
    圈一次,都触发一次计数。

    其中,步骤103的具体实施方法如图5所示,包括:

    10301、初始化虚拟线圈的检测值,令nCar为0,IsHeadLight
    为False。

    其中nCar为已计数车辆的个数,IsHeadLight表示上一帧视频
    图像中虚拟线圈是否检测到车灯。初始状态下可设置没有计数车辆,
    并没有检测到车与车头。若已有正确的检测结果,例如中间暂停视频
    等则跳过该初始化的过程。需要说明的是,本实施例仅提供一种定义
    和赋值方式,不排除其他合理的定义和赋值方式。

    10302、读取视频图像。

    10303、对所述视频图像进行二值化处理,得到二值图像。

    其中,该二值化处理的过程是为了提取视频图像中光亮的部分,
    便于对车灯信息的提取??梢愿菥楹褪悠党【扒榭鲈ざㄒ逡桓隽?br />度T值,超过T值的像素点记为1,其他记为0,这样就得到了只有
    两种颜色的二值图像。

    10304、将所述二值图像进行腐蚀膨胀运算。

    其中,将所述二值图像进行腐蚀膨胀运算为,将所述二值图像进
    行腐蚀操作再进行膨胀操作,从而去掉小的噪声等检测中不关心的亮
    点。

    10305、将腐蚀膨胀运算后的二值图像进行连通域分析,得到各
    连通域的外接矩形。

    10306、通过所述外接矩形的高度和宽度确定视频图像中的车灯。

    其中,外接矩形的高度和宽度在预定义的最小值和最大值之间,
    则认定为是车灯,高度或宽度中任何一个不满足要求均被认为不是车
    灯。其中预定义的最小值和最大值包括高度最小值、高度最大值、宽
    度最小值和宽度最大值,均由具体的视频情况和经验预先定义。通过
    对车灯大小的限定,可以去除大小不同的摩托车灯、地面反光或路灯
    等干扰光源。

    10307、计算所述外接矩形的高宽比,并根据所述高宽比对视频
    图像中的车灯进行进一步过滤,得到过滤后的车灯。

    需要说明的是,因为车灯的外接矩形应该近似为正方形,所以通
    过对高宽比的限定可以进一步的过滤车灯。高宽比在预定义的最小值
    和最大值之间便认定为是车灯,否则便认定为不是车灯。这里的预定
    义的最小值和最大值也是根据视频情况和经验预先定义的适当高宽
    比值。经过再次过滤后,绝大部分的干扰光源都被滤除,只留下车辆
    计数所关心的光源信息。

    10308、根据预定车道的范围,确定所述视频图像中每个预定车
    道上的车灯。

    其中,为了提高车灯匹配的准确性,可以预先标定车道,以免在
    接下来的车灯匹配中将相邻车道的车灯进行对比和匹配。

    10309、根据预定义的车辆车灯参数对视频图像中的车灯进行匹
    配,确定待计数车辆。

    其中,预定义的车辆车灯参数包括车辆两个车灯大小的相似性、
    车辆两个车灯的车灯间的距离、车辆两个车灯的车灯中心坐标的相对
    位置。系统对车灯以上参数分别做判定,同时满足各参数条件的车灯,
    才能完全匹配。

    两个车灯的大小相似性可以通过两个车灯的面积比来判断,例如
    车灯A的面积比上车灯B的面积,得到的比值必须在1左右。其中,
    预先限定面积比的最大值和最小值,例如最大值T1为1.3,最小值
    T2为0.7,则面积比在T1和T2之间被认定为通过大小相似性匹配,
    其他则被认定为不匹配。

    车灯间的距离可以通过其横坐标的差值来判定,例如车灯A中心
    点的横坐标与车灯B中心点的横坐标求差并取绝对值,得到两个车灯
    间的距离。根据视频情况和经验预先定义两个车灯间的距离范围,例
    如最小距离为T3,最大距离为T4,则车灯间的距离在T3和T4之间
    时被认定为通过车灯间距离匹配,其他则被认定为不匹配。

    车灯中心坐标相对位置可以根据车灯中心点的连线进行判定,例
    如求的两个车灯中心点连线的斜率并取绝对值,由于同一辆车的两个
    车灯应该平行前进,所以该连线的斜率应该在一定区间内。这个区间
    可以根据视频情况和经验预先定义,主要由道路与摄像头的相对方向
    决定。车灯中心连线的斜率在区间范围内则认定为通过中心坐标相对
    位置匹配,其他被认定为不匹配。

    10310、判断虚拟线圈中是否有匹配的车灯;若虚拟线圈中有匹
    配的车灯,则执行步骤10311;若虚拟线圈中没有匹配的车灯,则执
    行步骤10313。

    10311、判断上一帧视频图像虚拟线圈中是否有已计数的匹配车
    灯,即判断IsHeadLight是否为True;若此时IsHeadLight为True
    说明上一帧视频图像中虚拟线圈中有车灯,则不执行任何操作,直接
    返回步骤10302;若此时IsHeadLight为False说明上一帧视频图像
    虚拟线圈中没有车灯,则执行步骤10312。

    10312、车辆计数加1,即nCar++,并令IsHeadLight为True,
    然后返回步骤10302。

    需要说明的是,通过步骤10309已经确定所检测到的是匹配的车
    灯,通过步骤10310也检测到所述车灯进入虚拟线圈,并且之前虚拟
    线圈中没有车灯,从而说明是有一辆未经计数的车辆驶入了检测范
    围,应当予以计数。并且,记录下当前的检测状态,以便下一次检测
    时判断是否要计数,以免同一车辆因拥堵被再次检测而导致重复计
    数。

    10313、已确定虚拟线圈中没有车灯,令IsHeadLight为False,
    然后返回步骤10302。

    需要说明的是,令IsHeadLight为False,是为了记录下当前的
    检测状态,以便下一次检测时判断是否要计数。当再有车灯出现在虚
    拟线圈中时,便可再次记录。

    本发明实施例提供的基于虚拟线圈的车辆计数方法和装置,白天
    采用运动检测、边缘检测和车头检测相结合的算法,将车辆以车头为
    标识逐个分隔开,避免了在车辆拥堵而时动时?;虺盗菊沉钡闹馗?br />计数或漏检,实现了白天车辆的准确计数。在夜晚光照复杂的环境下,
    利用车灯这一车辆显著特征,采用一套简单有效的车灯检测和车灯匹
    配算法过滤干扰光源,将车辆以车灯为标识逐个分隔开,通过判断虚
    拟线圈中有车灯或无车灯的状态变化实现了夜晚车辆的准确计数。

    并且,具备白天和夜晚的判别算法,实现白天计数模式和夜晚计
    数模式的自动切换。

    实施例2

    本发明实施例提供一种车辆计数装置,如图6所示,包括:计数
    模式确定单元30、第一计数单元31和第二计数单元32。

    计数模式确定单元30,用于根据视频图像灰度直方图的相关系
    数,确定车辆的计数模式,所述计数模式包括白天模式和夜晚模式。
    根据所述计数模式确定单元30确定的计数模式,调用第一计数单元
    31或第一计数单元32对车辆进行计数。

    第一计数单元31,用于当白天模式时,利用预设的第一虚拟线
    圈进行运动检测和/或边缘检测以及利用预设的第二虚拟线圈进行车
    头检测,从而对视频图像中的车辆进行识别,并进行车辆计数。

    其中,如图2所示,在视频图像中待检测的每个车道中放置两个
    虚拟线圈,第一虚拟线圈和第二虚拟线圈,第一虚拟线圈为小线圈,
    第二虚拟线圈为大线圈,第二虚拟线圈的检测范围包含第一虚拟线圈
    的检测范围。第一虚拟线圈用于运动检测和边缘检测,第二虚拟线圈
    用于车头检测。需要说明的是,虚拟线圈的放置方式并不仅限于图示
    方法,其他的放置方式本发明实施例这里将不再赘述。具体检测方法
    在实施例1和实施例2中已经描述,此处不再赘述。

    第二计数单元32,用于当夜晚模式时,利用预设的第三虚拟线
    圈进行车灯检测和车灯匹配,从而对视频图像中的车辆进行识别,并
    进行车辆计数。

    其中,虚拟线圈的计数方法为,如图3所示,在视频图像中每一
    个待计数的车道上放置一个虚拟线圈,即第三虚拟线圈,在虚拟线圈
    内判断是否有车灯,车灯从无到有的状态变化说明有待计数的车辆驶
    入虚拟线圈,车灯从有到无的状态说明一辆已计数的车辆车灯离开了
    虚拟线圈。待计数车辆的车灯每通过虚拟线圈一次,都触发一次计数。

    进一步的,如图7所示,所述第一计数单元31包括:

    运动检测???11,用于通过运动检测确定当前视频图像中第一
    虚拟线圈中是否存在运动车辆;

    第一计数???12,用于在所述运动检测???11检测到所述第
    一虚拟线圈中存在运动车辆,并且所述上一帧视频图像中不存在计数
    车辆时,将车辆计数加1;第一计数???12还用于,在车头检测单
    元确定所述第二虚拟线圈中是车头,并且所述上一帧视频图像中没有
    车头时,将车辆计数加1。

    车头检测???13,用于在所述运动检测???11检测到所述第
    一虚拟线圈中存在运动车辆,并且所述上一帧视频图像不存在计数车
    辆时,通过车头检测确定第二虚拟线圈中是否有车头;所述车头检测
    ??橛糜诨袢∷鲂槟庀呷χ械某盗镜奶荻戎狈酵糎og特征,根据所
    述Hog特征确定所述虚拟线圈中是否有车头。

    边缘检测???14,用于在所述运动检测???11检测到所述虚
    拟线圈中不存在运动车辆时,通过边缘检测确定是否有车辆存在。

    所述第一计数???12还用于,在所述边缘检测???14检测到
    无车辆存在,不进行车辆计数。

    进一步的,如图8所示,所述第二计数单元32包括:

    车灯确定???21,用于利用车灯检测对视频图像中的干扰光源
    进行过滤,确定所述视频图像中的车灯。具体的,所述车灯确定???br />321用于对所述视频图像进行二值化处理,得到二值图像;将所述二
    值图像进行腐蚀膨胀运算;将腐蚀膨胀运算后的二值图像进行连通域
    分析,得到各连通域的外接矩形;通过所述外接矩形的高度和宽度确
    定所述视频图像中的车灯。

    车辆确定???22,用于根据预定义的车辆车灯参数对所述车灯
    确定???21确定的视频图像中的车灯进行匹配,确定待计数车辆。
    所述预定义的车辆车灯参数包括:车辆两个车灯的车灯大小的相似
    性、车辆两个车灯的车灯间的距离、车辆两个车灯的车灯中心坐标的
    相对位置。

    第二计数???23,用于当所述车辆确定???22确定的所述待
    计数车辆的车灯通过虚拟线圈时,车辆计数加1。

    其中,所述车灯确定???21还用于,在通过所述外接矩形的高
    度和宽度确定所述视频图像中的车灯之后,计算所述外接矩形的高宽
    比。根据所述外接矩形的高宽比对所述视频图像中的车灯进行过滤,
    得到过滤后的所述视频图像中的车灯。

    进一步的,如图9所示,所述第二计数单元32还包括:

    车道确定???24,用于当标定预定车道时,在所述车辆确定模
    块322根据预定义的车辆车灯参数对所述确定的视频图像中的车灯
    进行匹配,确定待计数车辆之前,根据预定车道的范围,确定所述视
    频图像中每个预定车道上的车灯。

    需要说明的是,本发明实施例所述装置所包含功能??榈钠渌?br />述,可以参考实施例1对应部分的描述,本发明实施例此处将不再赘
    述。

    本发明实施例提供的基于虚拟线圈的车辆计数方法和装置,白天
    采用运动检测、边缘检测和车头检测相结合的算法,将车辆以车头为
    标识逐个分隔开,避免了在车辆拥堵而时动时?;虺盗菊沉钡闹馗?br />计数或漏检,实现了白天车辆的准确计数。在夜晚光照复杂的环境下,
    利用车灯这一车辆显著特征,采用一套简单有效的车灯检测和车灯匹
    配算法过滤干扰光源,将车辆以车灯为标识逐个分隔开,通过判断虚
    拟线圈中有车灯或无车灯的状态变化实现了夜晚车辆的准确计数。

    并且,具备白天和夜晚的判别算法,实现白天计数模式和夜晚计
    数模式的自动切换。

    通过以上的实施方式的描述,所属领域的技术人员可以清楚地了
    解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以
    通过硬件,但很多情况下前者是更佳的实施方式?;谡庋睦斫?,
    本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以
    软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介
    质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台
    计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本
    发明各个实施例所述的方法。

    以上所述,仅为本发明的具体实施方式,但本发明的?;し段Р?br />不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范
    围内,可轻易想到变化或替换,都应涵盖在本发明的?;し段е?。
    因此,本发明的?;し段вσ运鋈ɡ蟮谋;し段?。

    关于本文
    本文标题:车辆计数方法和装置.pdf
    链接地址://www.4mum.com.cn/p-5870796.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 3d独胆是怎么计算的 赛车每天稳赚技巧新闻 快三跟计划怎么稳赚 后二组选包胆是什么意思 pk10免费挂机软件 内蒙古时时奖金对 彩神计划软件好吗 北京塞车双面盘玩法 重庆时时最新开奖结果 白小姐六肖期期准淮 pk10赛车计划软件 两张扑克牌比大小技巧 北京pk赛车开奖视频 倍投模式148 上海时时遗漏分析 全网最早原创36码特国网址