• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 15
    • 下载费用:30 金币  

    重庆时时彩平台外挂: 确定未着火汽缸中的压力的方法和设备.pdf

    关 键 词:
    确定 着火 汽缸 中的 压力 方法 设备
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN200810009272.2

    申请日:

    2008.01.31

    公开号:

    CN101235754A

    公开日:

    2008.08.06

    当前法律状态:

    终止

    有效性:

    无权

    法律详情: 未缴年费专利权终止IPC(主分类):F02D 13/02申请日:20080131授权公告日:20101103终止日期:20160131|||授权|||实质审查的生效|||公开
    IPC分类号: F02D13/02 主分类号: F02D13/02
    申请人: 通用汽车环球科技运作公司
    发明人: B·R·斯奈德
    地址: 美国密执安州
    优先权: 2007.1.31 US 11/669522
    专利代理机构: 中国专利代理(香港)有限公司 代理人: 李永波;刘华联
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN200810009272.2

    授权公告号:

    |||101235754B||||||

    法律状态公告日:

    2017.03.22|||2010.11.03|||2008.10.01|||2008.08.06

    法律状态类型:

    专利权的终止|||授权|||实质审查的生效|||公开

    摘要

    提供用于确定内燃机的未着火汽缸内的压力的制造物品和方法。汽缸包括由在汽缸内于上死点和下死点之间往复运动的活塞界定的可变容积燃烧室以及在所述活塞的重复的顺序的排气、进气、压缩和膨胀冲程期间进行控制的进气阀和排放阀。执行代码以便确定燃烧室的容积,并确定进气阀和排放阀的位置。在每次气阀转变时确定汽缸压力的参数值?;谌忌帐胰莼?、进气阀和排放阀的位置以及最近发生的气阀转变时的汽缸压力估算汽缸压力。

    权利要求书

    权利要求书
    1.  一种制造物品,包括存储介质,所述存储介质中编码有机器可执行程序,以便确定内燃机的未着火汽缸中的压力,所述汽缸包括由在所述汽缸内在上死点位置和下死点位置之间往复运动的活塞界定的可变容积燃烧室以及在重复的顺序的排气、进气、压缩和膨胀冲程期间进行控制的进气阀和排放阀,所述活塞在操作上连接到可旋转的发动机曲轴,所述程序包括:
    用于确定所述燃烧室的容积的代码;
    用于确定所述进气阀和所述排放阀的位置的代码;
    用于在每次气阀转变时确定汽缸压力的参数值的代码;以及
    用于基于所述燃烧室容积、所述进气阀和所述排放阀的位置以及最近发生的气阀转变时的汽缸压力估算汽缸压力的代码。

    2.  如权利要求1所述的物品,其特征在于,所述用于确定所述燃烧室容积的代码包括用于从标引到所述发动机曲轴的旋转位置的预先校准的燃烧室容积数组中选择燃烧室容积的代码。

    3.  如权利要求1所述的物品,其特征在于,所述用于在每次气阀转变时确定汽缸压力的参数值的代码包括用于基于在打开所述进气阀之后的进气歧管压力估算汽缸压力的代码。

    4.  如权利要求1所述的物品,其特征在于,所述用于在每次气阀转变时确定汽缸压力的参数值的代码包括用于基于在打开所述排气阀之后的大气压力估算汽缸压力的代码。

    5.  如权利要求1所述的物品,其特征在于,所述用于基于燃烧室容积、气阀位置和每次气阀转变时的汽缸压力估算汽缸压力的代码包括用于基于所述排气阀打开时的大气压力估算汽缸压力的代码。

    6.  如权利要求1所述的物品,其特征在于,所述用于基于燃烧室容积、气阀位置和每次气阀转变时的汽缸压力估算汽缸压力的代码包括用于基于打开所述进气阀后的歧管压力估算汽缸压力的代码。

    7.  如权利要求1所述的物品,其特征在于,所述用于基于燃烧室容积、气阀位置和每次气阀转变时的汽缸压力估算汽缸压力的代码包括用于基于关闭所述进气阀后的汽缸压缩比估算汽缸压力的代码。

    8.  如权利要求7所述的物品,还包括:
    用于基于当前的燃烧室容积和在此之前最近发生的气阀转变时的燃烧室容积之间的体积比的绝热近似值确定汽缸压缩比的代码;以及
    用于基于所述汽缸压缩比确定当前汽缸压力的代码。

    9.  如权利要求1所述的物品,其特征在于,所述代码经执行用于在点燃所述发动机之前在发动机空转期间确定所述未着火汽缸中的压力。

    10.  如权利要求9所述的物品,其特征在于,所述机器可执行代码的执行和所述发动机的旋转的开始基本上同时开始。

    11.  如权利要求10所述的物品,还包括在点燃所述发动机之前曲柄角每旋转五度重复执行所述机器可执行代码至少一次。

    12.  如权利要求1所述的物品,其特征在于,所述代码经执行用于在中断点燃所述发动机之后在发动机空转期间确定所述未着火汽缸中的压力。

    13.  如权利要求1所述的物品,还包括用于基于发动机旋转速度调整估算的汽缸压力的代码。

    14.  如权利要求1所述的物品,还包括用于基于所述进气阀的泄漏调整估算的汽缸压力的代码。

    15.  一种制造物品,包括存储介质,所述存储介质中编码有机器可执行程序,以便确定未着火的多缸内燃机中的发动机曲轴转矩,所述发动机包括多个各由在所述汽缸之一内在上死点位置和下死点位置之间往复运动的活塞界定的可变容积燃烧室以及在重复的顺序的排气、进气、压缩和膨胀冲程期间进行控制的进气阀和排放阀,每个活塞在操作上连接到可旋转的发动机曲轴,所述程序包括:
    用于确定所述每个燃烧室的容积的代码;
    用于确定所述进气阀和所述排放阀的位置的代码;
    用于在每次气阀转变时确定汽缸压力的代码;
    用于基于所述燃烧室容积、所述进气阀和所述排放阀的位置以及最近发生的气阀转变时的汽缸压力估算每个汽缸的气缸压力的代码;
    用于基于所估算的汽缸压力确定每个汽缸的汽缸曲轴转矩的代码;以及
    用于基于所述每个汽缸的汽缸曲轴转矩确定总的曲轴转矩的代码。

    16.  如权利要求15所述的物品,其特征在于,所述用于确定所述发动机旋转期间的发动机压缩转矩的代码包括在所述制造物品中按照一个或多个计算机程序执行的发动机压缩转矩模拟。

    17.  如权利要求16所述的物品,还包括用于在环境和发动机工况范围内预测发动机转矩的发动机压缩转矩模拟。

    18.  如权利要求15所述的物品,其特征在于,所述用于基于燃烧室容积、气阀位置和每次气阀转变时的汽缸压力估算汽缸压力的代码包括用于基于关闭所述进气阀后的汽缸压缩比确定汽缸压力的代码。

    19.  如权利要求18所述的物品,还包括:
    用于基于当前的燃烧室容积和在此之前最近发生的气阀转变时的燃烧室容积之间的体积比的绝热近似值确定汽缸压缩比的代码;以及
    用于基于所述汽缸压缩比确定当前汽缸压力的代码。

    20.  用于确定内燃机的未着火汽缸中的压力的方法,所述汽缸包括由在所述汽缸内于上死点位置和下死点位置之间往复运动的活塞界定的可变容积燃烧室以及在重复的顺序的排气、进气、压缩和膨胀冲程期间进行控制的进气阀和排放阀,所述活塞在操作上连接到可旋转的发动机曲轴,所述方法包括:
    确定所述燃烧室的容积;
    确定所述进气阀和所述排放阀的位置;
    在每次气阀转变时确定汽缸压力;以及
    基于所述燃烧室容积、所述进气阀和所述排放阀的位置以及最近发生的气阀转变时的汽缸压力估算汽缸压力。

    21.  如权利要求20所述的方法,其特征在于,基于汽缸容积、气阀位置和每次气阀转变时的汽缸压力估算汽缸压力包括基于在关闭所述进气阀后的汽缸压缩比确定汽缸压力。

    22.  如权利要求21所述的方法,还包括:基于当前的燃烧室容积和在此之前最近发生的气阀转变时的燃烧室容积之间的体积比的绝热近似值确定汽缸压缩比;以及基于所述汽缸压缩比确定当前汽缸压力。

    说明书

    说明书确定未着火汽缸中的压力的方法和设备
    技术领域
    本发明一般涉及用于发动机和动力系统的控制系统。
    背景技术
    在包括移动平台在内的各种设备上都采用内燃机来产生牵引和其它应用的转矩。内燃机可以是用于通过传输装置将转矩传输给车辆传动系的动力系架构的元件之一。动力系架构还可包括和发动机协同工作的一个或多个电机。在采用内燃机的移动平台运行过程中,有利的是停止点燃其中一个或多个汽缸,包括完全停止发动机运行和发动机旋转?;褂欣氖撬婧竽苤榔啄诘难沽?,以便在运行过程中有效地旋转、点燃和重启发动机,控制和管理发动机转矩振动,减小噪音,并改善动力系的整体运行控制。
    现有技术的系统利用离线开发的模型来确定汽缸压力。这些系统的优点在于,它们使得对实时计算的需求最小化。但是,由于包括大气压力、发动机速度、初始发动机曲柄角、发动机磨损特性等的因素的实时变化引入的变化,这些系统的精度相对较差。因此,需要在发动机运行过程中实时地精确确定发动机汽缸压力。
    发明内容
    根据本发明的一个实施例,提供一种制造物品和方法,它包括内部存储有机器可执行代码的存储介质。所存储的代码用于确定内燃机的未着火汽缸中的压力。汽缸包括由在汽缸内于上死点和下死点之间往复运动的活塞界定的可变容积燃烧室和在所述活塞的重复的顺序的排气、进气、压缩和膨胀冲程期间进行控制的进气阀和排气阀。该代码执行时用于确定燃烧室的容积,并确定进气阀和排气阀的位置。在每次气阀转变时确定汽缸压力的参数值。汽缸压力是基于燃烧室容积、进气阀和排气阀的位置以及最近发生气阀转变时的汽缸压力进行估算的。
    本领域的技术人员在阅读和理解以下对实施例的详细描述后,将能明白本发明的这些和其它方面。
    附图说明
    本发明在某些部件和部件布置方面采用实体形式,对其实施例有详细描述且在附图中示出,附图形成本发明的一部分,并且其中:
    图1是根据本发明的示例性发动机的示意图;以及
    图2是根据本发明的示例性控制方案的示意图。
    具体实施方式
    现在参照附图,其中描绘只是为了说明本发明,而不是为了限制本发明,图1描绘根据本发明的一个实施例构造而成的内燃机10和控制系统5的示意图。该发动机只是说明性的,它包括常规燃油喷射式火花点火发动机。应明白,本发明适用于各种内燃机配置。
    该示例性发动机包括具有多个汽缸的发动机机体25,并且汽缸盖27密封地附着到该发动机机体25。在每个汽缸中有一个活动活塞11,它和汽缸壁、汽缸盖以及活塞一起界定可变容积燃烧室20??尚那?5通过连接杆连接到每个活塞11,活塞11在运行过程中在汽缸中往复运动。汽缸盖27提供进气口17、排气口19、进气阀21、排气阀23和火花塞14的结构。燃油喷射器12优选设置在进气口中或其附近,流体连接到加压燃油供应系统以便接收燃油,并可进行操作以便在发动机运行期间在用于摄入的进气口附近将加压燃油周期性地喷射或喷洒到燃烧室中。燃油喷射器12和这里描述的其它致动器的致动受电子式发动机控制???“ECM”)的控制,其中ECM是控制系统5的元件之一?;鸹ㄈ?4包括可进行操作以便点燃在燃烧室20中形成的燃油/空气混合物的已知装置。受ECM控制的点火??橥ü谙喽杂谌忌罩芷诤鲜实氖奔湓诨鸹ㄈ湎吨涫头疟匦枇康牡缒芾纯刂频慊?。进气口17将空气和燃油引导到燃烧室20。进入燃烧室20的气流受到一个或多个进气阀21的控制,这个或这些进气阀21在操作上受到包括挺杆和凸轮轴(未示出)的气阀致动装置的控制。燃烧后的气体从燃烧室20流经排气口19,燃烧后的气体是受到一个或多个排气阀23的控制流过该排放口的,其中这个或这些排气阀23在操作上受到诸如第二凸轮轴(未描绘)的气阀致动装置的控制。这里不再赘述用于控制气阀的开和关的控制方案的具体细节??梢岳冒ㄒ貉故狡Ω俗爸?、可变凸轮相位器、可变或多阶气阀升程装置与汽缸停用装置和系统在内的气阀致动和控制装置来扩展发动机的工作区域,并且这些装置落在本发明的范围内。发动机和燃烧控制的其它普遍已知的方面已为人所知,这里不再赘述。发动机的运行通常包括常规的四冲程发动机运行,其中每个活塞在汽缸内于由曲轴35的旋转界定的上死点(TDC)和下死点(BDC)位置之间往复运动,进气阀和排气阀的开和关在重复的顺序的排气、进气、压缩和膨胀冲程期间进行控制。
    在一个实施例中,发动机是混合动力系统的一个元件,该混合动力系统包括发动机、电-机传输装置和一对包括电动机/发电机的电机。上述元件可以进行控制以便在其间选择性地传输转矩,产生用于传输给传动系的牵引或动力转矩,并产生用于传输给其中一个电机或电存储装置的电能。
    ECM优选是总控制系统5的一个元件,该系统5包括可进行操作以便提供协调的动力系统控制的分布式控制??榧芄?。该动力系统控制可以有效地控制发动机以便满足操作者的转矩要求,包括推进动力和各个附件的操作。一般将控制系统和发动机10之间的通信作为要素45进行描绘,它包括在发动机的和控制系统的元件之间传送的多个数据信号和控制信号。ECM收集和合成来自包括MAP(歧管绝对压力)传感器16、发动机曲柄传感器31、排放气体传感器40和空气流量传感器(未示出)在内的传感装置的输入,并执行控制方案以便操作各个致动器,如燃油喷射器12和火花塞14处的用于火花点火的点火???,从而实现控制目标,包括诸如燃油经济性、辐射、性能、传动性和硬件?;さ牟问?。ECM优选是通用数字计算机,它一般包括微处理器或中央处理单元、存储介质(包括只读存储器(ROM)、随机存储存储器(RAM)、电可编程只读存储器(EPROM))、高速时钟、模拟-数字(A/D)和数字-模拟(D/A)转换电路以及输入/输出电路和装置(I/O)和合适的信号调节和缓冲电路。包括算法和校准的控制方案作为机器可执行代码存储在存储器装置中,并且可以选择性地执行。算法通常是在预设回路循环期间执行的,以便使每个算法在每个回路循环至少执行一次。作为机器可执行代码存储在存储器装置中的算法由中央处理单元执行,并且可以进行操作以便监测来自传感装置的输入并执行控制和诊断例行程序以利用预设校准控制相应装置的运行?;芈费吠ǔJ窃诜⒍统盗驹诵衅诩湓谟泄媛傻募涓糁葱械?,如每3.125、6.25、12.5、25和100毫秒?;蛘?,可以响应某一事件的发生执行算法。
    本发明包括模拟模型,该模型作为机器可执行代码进行存储并在控制系统中定期执行。该模拟模型可用于根据发动机曲柄角的函数实时计算每个汽缸的汽缸压力。汽缸压力是由曲轴的旋转动作产生的,其中活塞在发动机汽缸中的运动受到汽缸的燃烧室内的截留空气的阻碍。根据汽缸压力确定曲轴转矩,即每个活塞施加在曲轴上的转矩。确定总的发动机曲轴转矩,包括为每个汽缸计算的汽缸转矩的总和。每个汽缸转矩是通过将转矩比乘以汽缸压力确定的。根据曲柄角的函数为每个汽缸确定转矩比,曲柄角的函数包括汽缸几何尺寸和汽缸摩擦力的变化。转矩比优选是存储在存储器中并且可以基于曲柄角检索的预校准值数组。
    模拟模型一般包括存储在控制系统的ECM或其它控制??橹械幕骺芍葱写?,它用于确定在发动机空转(即,发动机曲轴在汽缸中没有火花点火和燃油喷入的情况下旋转)时在动力系统运行期间在内燃机的未着火汽缸中的压力。模拟模型基本上在停止的发动机开始旋转的同时、或者在发动机点火因为停止发动机加燃油和/或火花点火而停止时开始执行。当发动机正在启动或停止、或者在停用特定汽缸时,会发生这些运行情况。发动机启动可以包括发动机曲轴旋转一段时间后将燃油或火花点火引入到汽缸中。优选在发动机每旋转几度时定期地确定压力,通常是曲轴每旋转五度至少确定一次,或者在每个6.25ms回路循环期间确定压力。
    代码包括确定燃烧室容积的瞬时测量值和确定进气阀和排气阀的位置。这包括在每次气阀转变时确定汽缸压力。在发动机运行期间会发生四个气阀转变事件,包括进气阀打开(IVO)、进气阀关闭(IVC)、排气阀打开(EVO)和排气阀关闭(EVC)。每个未着火汽缸的汽缸压力是基于燃烧室容积、对应进气阀和排气阀的位置以及最近一次发生的气阀转变时的汽缸压力的。
    如下所述计算汽缸压力。一般的汽缸压力等式如下式1:
    P2=P1*(V1/v2)1.3    [1]
    其中,P2表示当前时步(timestep)的汽缸压力,且P1表示在最近一次发生的气阀转变时确定的汽缸压力。汽缸压缩近似为绝热压缩,即具有最小的或没有热传递。V1项包括前一次最近发生的气阀转变时的燃烧室容积,且V2包括当前时步的燃烧室容积,它是基于包括基于发动机曲柄角确定的燃烧室容积范围的预定校准的。用于执行式1的算法只在进气阀和排气阀都关闭,即ValveState是ValvesClosed时才执行。压力和转矩计算优选是在最高计算速率(即,6.25ms)下进行计算的。
    当排气阀打开(即,ValveState是ExhaustOpen)时,P2是基于通往大气压力的一阶滞后过滤器确定的。总的假设是,气流速度足够低以至于排气背压处于环境大气压力下。当进气阀打开时,P2是基于通往岐管压力的一阶滞后过滤器确定的。该模型的总假设是,气流速度足够低以至于对于所有计算,排气背压都固定为零(0.0kPa)。当气阀关闭时,在气阀关闭之前计算必需数据。对于发动机正转,进气阀关闭,将P1初始化为岐管压力(MAP),并通过利用IVC的角度和基于发动机曲柄角校准燃烧室容积来计算V1。对于发动机反转,排气阀关闭,将P1初始化为大气压力,并通过利用EVO的角度和基于发动机曲柄角校准燃烧室容积来计算V1。同时对活塞的泄漏和漏气(blow-by)进行校正,这对于低发动机速度达到正确的初始状态来说是至关重要的。这包括将P1的值修正为P1adj,以便与P1和P2间的压力差成比例地抵消损耗,该修正或调整包括式2:
    P1adj=P1-K*(P2-Patm)    [2]
    其中,K是可校准的系统特有过滤系数或增益因子。
    优选将基于发动机曲柄角的燃烧室容积(V1,V2)的校准作为对应于发动机曲柄角的燃烧室容积的长索引数组存储在RAM中,以便加快计算速度,从而允许控制??橹葱心D庖曰诜⒍歉菰ばW际樗饕范ㄗ乇?。(V1/V2)1.3的指数函数是根据代表性体积比的范围(V1/V2的范围为约0.2到15)的二阶多项式进行估算的,这提供良好的实际拟合且显著减小计算负担。实现实时压力和转矩计算的关键策略包括:如前所述基于发动机曲柄角对燃烧室容积进行校准;以及基于汽缸压力对曲轴转矩进行校准,对于特殊发动机应用,这两项是离线确定的,并且作为校准执行,以便将计算负担减至最低。
    进气阀和排气阀的每次打开和关闭事件都是离散建模的,即气阀要么打开要么关闭。当其中一个气阀变为打开时,汽缸压力经过滤为岐管压力(MAP)或排气压力PEXHAUST之一,其中假定排气压力PEXHAUST是大气压力,如图3所示:
    P2=P1*(1-K)+PEXHAUST*K;    [3]
    其中,P2表示当前时步的汽缸压力,且P1表示在最近发生的气阀转变时确定的汽缸压力。每次气阀计时事件都需要精确计时,优先小于5度曲柄旋转角。这包括为了抵消气流动力以及气阀挺杆的泵送和泄漏而进行的基于速度的校正。
    还要对气阀位置和气阀计时对汽缸压力的影响建模,以便包含在控制方案中。在发动机运行过程中,不间断地发生这四种气阀转变事件,包括进气阀打开(IVO)、进气阀关闭(IVC)、排气阀打开(EVO)和排气阀关闭(EVC)。关于对汽缸压力建模,发生IVC时的曲柄角至关重要,因为这引起发动机运行,其中当发动机正向旋转时所有气阀都关闭;并且燃烧室基本上是一个闭合室,其压力基于燃烧室的容积而改变。为了限制计算负担,只对显著影响IVC角的因素建模。在最快的计算回路(即,3.125ms)内,模拟模型监测每个汽缸的曲柄角,并指派ValveState标记,它设为IVO、EVO和气阀关闭(IVC和EVC)之一。气阀重叠忽略不计,因为它对曲轴转矩的影响微乎其微。IVC角有两个主要影响因素。气流动力是发动机速度的函数,它们会将对气阀计时进行建模时的有效气阀关闭角变为100%打开或100%关闭。
    此外,在低和零发动机速度下,液压式气阀挺杆往往会泄沉在任何处于打开状态的气阀上,直到任何一个气阀关闭或者挺杆完全陷下。随着发动机速度的增加,空气离开气阀的速度也随之增加。因此,对于类似压降,气阀必须再打开。这是利用离线开发的计算流动力(CFD)模拟解决的,其中这些模拟在实际气阀动力学下执行以便估计在活塞上死点(TDC)处达到的最大汽缸压力。如式2所示的简化模型可以重新表示为式4:
    VIVC=(PTDC/PIVC)0.769*VTDC    [4]
    其中,VIVC是进气阀关闭时的燃烧室容积;
    PTDC是处于上死点时的汽缸压力;
    PIVC是进气阀关闭时的汽缸压力;且
    VTDC是处于上死点时的燃烧室容积。
    VIVC可用于直接确定IVC时的曲柄角,它利用预校准的凸轮分布校准IntakProfile来描绘等效IVC(EIVC)时的气阀挺杆,以便基于曲柄角确定气阀挺杆。优选利用离线模拟在不同发动机速度下基于发动机速度(IVCLift_v_RPM)确定气阀升程的校准表。对数据进行曲线拟合,以便基于发动机速度确定IVC时的升程斜率。该校准允许通过如式5所示将校准值乘以发动机速度来实时确定模型从进气阀打开的状态(IVO)变为进气阀关闭的状态(IVC)的气阀升程:
    EIVC_Lift=RPM*IVCLift_v_RPM    [5]
    气阀挺杆可以在缓慢的发动机速度下和在发动机关闭时泄漏,这会影响发动机启动时的有效气阀计时。当气阀打开时,阀系负载施加在液压式挺杆上,挺杆不是完好密封的装置,结果是流体泄漏且挺杆和气阀移位。下漏速率随着温度、磨损和组件公差紧密变化。挺杆一直下漏到它到底或气阀关闭为止。在挺杆以零速度下漏所花的那几秒时间期间,汽缸模型通常不会牵引,因为存在太多变化源。但是,控制方案将汽缸转变为非燃式运行的时间通常长于几秒,从而允许对最终位置合理建模。
    在该实施例中,只对进气阀挺杆建模,以便减小计算负担并节省时间。排气阀计时对压缩转矩的影响被认为不太重要。这是因为,排气阀的打开是在压力估算操作结束时发生的,且排气阀的关闭和进气阀的打开重合,并在参照上式2描述的压力估算窗口之外。
    基于ValveState数据,当气阀转变状态包括IVO或IntakeOpen时,那个汽缸的挺杆下漏变量递增。数据通常以升程尺寸毫米(mm)提供,并且参照凸轮分布。下露变量限于经过校准的最大下漏值。当ValveState变为ValvesClosed或ExhaustOpen时,那么将挺杆下漏重设为零。对于排气阀转变,EVO和EVC的角度是固定校准,因为任一种转变的计时的变化不会引入足够的最终转矩误差,从而保证更完全地对计算建模。对于进气阀转变,IVO和IVC都要调整。优选基于凸轮分布图利用IVO的基本校准(BaseIVO)来计算IVO转变,其中凸轮分布图的递增因子基于凸轮打开的近似斜率(CamSlope)和挺杆下漏(LifterLeakdown):
    IVOangle=BaseIVO+CamSlope*LifterLeakdown
    利用LifterLeakdown和有效IVC所需的升程来更精确地计算IVC角。优选利用实际凸轮分布作为校准来基于凸轮升程和凸轮轴角来提供进气阀分布IntakeProfile。进气阀被认为打开时的总凸轮升程按照下式计算:
    Lift=EIVC_Lift+LifterLeakdown
    可以在凸轮分布校准IntakeProfile中查找计算后的升程处的IVC角。该计算通常是在更缓慢的回路循环速率之一下进行的,其中将数据馈送到快速内回路中,以便估算汽缸压力并为每个进气阀和排气阀指派气阀状态。
    基于曲柄角的转矩比校准TorqRatio_Vs_Angle优选离线构造,它将曲轴转矩(Nm)的等效值表示成在每个曲柄角处确定的汽缸压力(kPa)的函数。转矩比参数是为特殊发动机设计和配置设计的,它们包括和汽缸几何尺寸和活塞摩擦力有关的因子。转矩比因子TorqRatio可以根据曲柄角的函数由每个汽缸的校准TorqRatio_Vs_Angle确定。因此,给定汽缸的汽缸转矩包括估算的汽缸压力与转矩比的乘积,  即,CylTorq=TorqRatio*CylPres。总的曲轴转矩经确定是每个汽缸的汽缸转矩值CylTorq的总和。优选将TorqRatio_Vs_Angle的校准作为数组存储在非易失性计算机存储器中,以便提高计算速度。
    用于确定汽缸压缩压力的实时模拟模型优选在发动机曲轴开始旋转时或在此之前、或者在发动机点燃中断(先决条件是停止发动机旋转)之后开始运行。因此,通过对气阀计时建模、离线生成校准表并假定为简单的绝热压缩,可以在控制??橹芯返厥凳惫浪愣郧┘拥乃彩弊?。
    现在参照图2,提供根据本发明的一个实施例设计的总控制方案的示意性框图。优选利用这里描述的控制系统中的内嵌式控制器来执行所描述的控制方案。为了实现发动机或动力系控制,控制系统优选在需要包括发动机曲轴转矩在内的和汽缸压力有关的信息时执行控制方案,例如在发动机启动期间或在发动机关闭期间??刂品桨敢部梢栽谄渲幸桓龌蚨喔銎淄S檬敝葱?。
    总控制方案有两个功能要素,包括:用于计算汽缸转矩和压力的控制方案,描绘为CalCylTorqPress;和用于计算汽缸数据的控制方案,描绘为CalcCylData。
    CalcCylData控制方案优选在每个发动机汽缸启用时的每个25ms回路循环执行一次,例如在发动机启动操作期间。CalcCylData控制方案的输入包括发动机汽缸的数量(NumCyls)、曲柄壳压力(CrankCasePress)、发动机进气岐管压力(MAP)、发动机速度(EngRPM)、排气系统压力(ExhaustSysPress)。其它输入包括选定发动机汽缸的挺杆状态(LifterState)和当前的汽缸压力(CylPres),它们是从CalCylTorqPress控制方案输出的。另一个输入包括根据发动机曲柄角的函数确定的经过预校准的燃烧室容积数组(Disp VsAngle)。根据上述输入,确定CalcCylData控制方案的各个输出,并将它们输入到CalCylTorqPress控制方案中。这些输出包括进气阀打开角(Phi_IntVlvOpen)、进气阀关闭角(Phi_IntVlvCls)、初始燃烧室容积(InitialCylVol)和汽缸的初始汽缸压力(InitalCylPrs)。
    优选在每个发动机汽缸启用时的每个6.25ms回路循环期间执行CalCylTorqPress控制方案。CalCylTorqPress控制方案的输入包括通?;诓饬康牟问刺?,包括发动机曲柄角(CrankAngle)和发动机进气岐管压力(MAP)。所确定的其它发动机状态包括曲柄壳压力(CrankCasePress)和排气系统压力(ExhaustSysPress)。其它值包括排气阀打开角(Phi_ExhVlvOpen),包括基于曲柄角确定的转矩比的预订校准(TorqRatio VsAngle)、基于曲柄角的燃烧室位移的预订校准(DispVsAngle)和汽缸数量(NumCyls)。此外,提供来自CalcCylData控制方案的输入,包括进气阀打开角(Phi_IntVlvOpen)、进气阀关闭角(Phi_IntVlvCls)、初始燃烧室容积(InitialCylVol)和初始汽缸压力(InitialCylPrs)。
    CalCylTorqPress控制方案经过配置用于操纵所描述的输入,以便在启用控制方案时,在运行期间利用上文所述的等式和校准计算和确定输出,包括汽缸压力和曲轴转矩(TotalCrankTorq)
    在本发明的范围内也可以允许备选实施例,包括采用诸如可变凸轮定相的气阀管理装置的系统。在采用可变凸轮定相的实施例中,优选在执行模拟模型期间将凸轮定相锁定为空档位置??盏滴恢每梢允峭孤秩媲敖恢没蛲孤秩婕跛傥恢?,优选是凸轮全面减速位置,以便将压缩脉冲的幅度减至最小。
    本文描述的控制方案和相关结果的具体细节是用于说明如权利要求所述的本发明的。上文具体参照实施例及其修正描述了本发明。本领域的技术人员在阅读和理解本说明书后可以联想到其它修正和改变。只要所有这些修正和改变落在本发明的范围内,就希望本发明包含所有这些修正和改变。

    关于本文
    本文标题:确定未着火汽缸中的压力的方法和设备.pdf
    链接地址://www.4mum.com.cn/p-5790099.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 微信一个骰子赌博游戏规则 慈善网195252cm·三肖 七乐彩开奖结果今天 pk104码倍投方法 大乐透走势图 pk10技巧345678定位 内蒙古时时彩稳赚技巧 六肖投资技巧 一分快三怎样看左右走势 江苏快三计划软件网页 大乐透最近200期 奔驰团队pk10全天计划 新时时几时开 七星彩前四位号码简单计算 七星彩赚钱靠谱么 中国福利彩票p62开奖结果