• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 17
    • 下载费用:30 金币  

    重庆时时彩和黑彩勾结: 基于图像灰度梯度和灰度统计直方图的自适应预分割方法.pdf

    摘要
    申请专利号:

    重庆时时彩单双窍门 www.4mum.com.cn CN200910264886.X

    申请日:

    2009.12.25

    公开号:

    CN101710425A

    公开日:

    2010.05.19

    当前法律状态:

    终止

    有效性:

    无权

    法律详情: 未缴年费专利权终止IPC(主分类):G06T 7/00申请日:20091225授权公告日:20111116终止日期:20151225|||授权|||实质审查的生效IPC(主分类):G06T 7/00申请日:20091225|||公开
    IPC分类号: G06T7/00 主分类号: G06T7/00
    申请人: 南京航空航天大学
    发明人: 李桥樑; 黄宵宁; 杨忠; 吴怀群
    地址: 210016 江苏省南京市白下区御道街29号
    优先权:
    专利代理机构: 南京经纬专利商标代理有限公司 32200 代理人: 许方
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN200910264886.X

    授权公告号:

    |||101710425B||||||

    法律状态公告日:

    2017.02.15|||2011.11.16|||2010.07.07|||2010.05.19

    法律状态类型:

    专利权的终止|||授权|||实质审查的生效|||公开

    摘要

    本发明公布了一种基于图像灰度梯度和灰度统计直方图的自适应预分割方法。本发明利用图像的灰度梯度信息和图像本身的灰度统计直方图信息来自适应生成用于图像分割的阈值序列,将连续灰度图像转换为离散灰度图像,实现图像的预分割,以便于后续的图像分割。本发明约束条件少,适用范围广,算法复杂度低,实现简单,运算速度快。

    权利要求书

    1: 一种基于图像灰度梯度和灰度统计直方图的自适应预分割方法,其特征在于包括以下步骤: (1)将输入的彩色图像转换为灰度图像I G ; (2)在水平方向逐行扫描步骤(1)所述的灰度图像I G ,得到灰度图像I G 的每个像素在水平方向的灰度梯度,形成灰度图像I G 的灰度梯度图I grad ; (3)计算灰度梯度:对步骤(2)所述的灰度梯度图I grad 中属于[4,255]区间的灰度梯度值进行统计平均,得到灰度图像I G 的统计平均灰度梯度G s ,其中4为视觉器官可感知的最小灰度梯度,255为灰度图像I G 的最大灰度梯度;将统计平均梯度G s 与视觉器官能明显感知的灰度梯度区间G e =[16,32]比较,得到灰度图像I G 的灰度梯度G g :如G s <16,则G g =16;如G s >32,则G g =32;否则G g =G s ; (4)采用灰度图像I G 的所有灰度等级建立其灰度直方图H G ,所述灰度直方图H G 表示灰度图像I G 的每个灰度等级k对应的像素数量n k ,其中横轴为灰度级别k;竖轴为相应灰度级别k的像素个数n k ,灰度等级k的取值范围为0至255; (5)扫描步骤(4)所述的灰度直方图H G ,得到灰度属性列表A k ,即针对每个灰度等级k,根据其像素数量n k 与其前一个灰度等级(k-1)的像素数量n k-1 的大小关系,将对应的灰度属性列表A k 标记为“上升”、“下降”或“不变”:当n k >n k-1 ,则标记灰度级k为“上升”;当n k <n k-1 ,则标记灰度级k为“下降”;当n k =n k-1 ,则标记灰度级k为“不变”;灰度级别0和255均标记为“不变”; (6)扫描灰度属性列表A k ,并在灰度属性列表A k 中标记出“谷底”区域序列B i,j(i,j∈0-255,j≥i) ,“谷底”区域B i,j(i,j∈0-255,j≥i) 是指灰度属性列表A k 中属性A i 为“下降”、A j 为“上升”的区间; (7)找到步骤(4)所述的灰度直方图H G 的峰值n p =MAX(n k ),确定灰度直方图H G 的峰值n p 对应的灰度等级p所对应的图像分割灰度阈值区间T p =[t 0 ,t 1 ],其中MAX()表示求最大值;t 0 =MAX(0,p-G g ),t 1 =MIN(255,p+G g ),其中MIN()表示求最小值;在灰度属性列表A k 上,从t 0 向峰值对应的灰度等级p方向即从小到大扫描,当在[t 0 ,p]区间找到第一个“谷底”,则取该“谷底”对应的灰度等级为新的t0值,找不到“谷底”则t 0 不变;同样地,从t 1 向峰值对应的灰度等级p方向即从大到小扫描,当在[p,t 1 ]区间找到第一个“谷底”,则取该“谷底”对应的灰度等级为新的t 1 值,找不到“谷底”则t 1 不变; (8)扫描整个灰度图像I G ,将灰度等级属于步骤(7)所述的图像分割灰度阈值区间T p =[t 0 ,t 1 ]的像素的灰度等级设置为p; (9)将灰度直方图H G 中满足k∈T p =[t 0 ,t 1 ]的n k 设为0,即n k =0; (10)重复步骤(7)、(8)、(9),直到灰度图像直方图的峰值为0,完成图像像素的聚类,实现图像的预分割。
    2: 根据权利要求1所述的基于图像灰度梯度和灰度统计直方图的自适应预分割方法,其特征在于步骤(2)所述的灰度图像I G 的每个像素在水平方向的灰度梯度的求取方法如下:每行中第m个像素的灰度梯度g m =ABS(V m -V m-1 ),其中V m 、V m-1 是一行中像素m及其前一个像素m-1的灰度值,ABS()表示取绝对值,每行的第一个像素的灰度梯度为0,其中m为自然数,m∈[1,N],N为灰度图像I G 中每行像素的个数。
    3: 根据权利要求1所述的基于图像灰度梯度和灰度统计直方图的自适应预分割方法, 其特征在于步骤(3)所述的统计平均梯度G s 的方法如下: 建立步骤(2)所述的灰度梯度图I grad 的灰度直方图H g ,对所述灰度直方图H g 区域[4,255]内的灰度等级进行加权平均,求得灰度图像I G 的统计平均梯度G s : G s = λ * n λ Σ λ = 4 255 n λ , ]]> λ∈[4,255], 其中λ、n λ 分别为灰度梯度图I grad 的每个灰度等级λ对应的像素数量n λ 。

    说明书


    基于图像灰度梯度和灰度统计直方图的自适应预分割方法

        【技术领域】

        本发明涉及一种基于图像灰度梯度和灰度统计直方图的自适应预分割方法,属于应用于通过机器视觉来实现目标识别的图像预处理,尤其涉及利用图像的灰度梯度信息和图像本身的灰度统计直方图信息来自适应生成用于图像分割的阈值序列,将连续灰度图像转换为离散灰度图像,实现图像的预分割,以便于后续的图像分割的图像处理的技术领域。

        背景技术

        图像分割是图像识别和图像理解的基础和关键,也是机器视觉的经典难题,就图像分割而言,到目前位置,提出的分割算法不下千种,并且每年还有不少新算法出现。

        图像分割的基本目的是要将目标前景信息从原始采样图像中抽取出来,实现前景与背景的分割,同时过滤和屏蔽成像过程中引入的各种噪声和成像缺陷。

        纵览各种图像分割算法,其中绝大部分都是基于图像在像素级别的不连续性和相似性。也就是说,属于同一目标的区域具有相似性,而不同区域在边界会表现出不连续性。这些方法大致可以分成以下几类:

        边缘检测方法:基于图像边缘在像素级别上的某些方向存在边缘梯度,通过从某些方向求图像的一阶(如Roberts算子、Sobel算子、Prewitt算子等)或二阶导数(如高斯-拉普拉斯算子、LOG算子)等微分算子来寻找边缘。Canny算子是一种不采用微分算子的边缘检测算子。但边缘检测方法对成像噪声的抑制效果很一般、对成像缺陷的修复几乎无能为力,其检测效果反而因此而下降。

        边缘跟踪方法:由于前述的边缘检测方法检测出的边缘点往往由于成像噪声、光照不均等原因而不连续,边缘跟踪方法就是对这些边缘点进行跟踪,形成连续的边缘。最著名的当属常用于直线、椭圆检测的Hough变换。

        区域分割法:包括区域增长法和区域分裂合并法。其基本思想是基于同一区域像素的相似性。对输电线路部件识别这种先验知识很少、场景复杂、成像条件约束很少的应用进行图像确有一定的优势。但由于输电线路部件识别一般采用高分辨率成像设备,而这种算法在具体实现上一般采用递归方法,牵涉到较大的计算时间开销,因此对计算速度影响较大。

        【发明内容】

        本发明目的是针对现有技术存在的不足提供一种基于图像灰度梯度信息和图像本身的灰度统计直方图信息的自适应图像预分割算法,实现图像的预处理。本发明利用图像的平均灰度梯度值及图像本身的灰度统计直方图信息,生成用于图像分割的阈值序列,构造像素相似性区间,判断像素之间的相似性,对图像中具有相似性质的像素进行聚类,使得图像的信息层次分明,方便对图像进行分割等后续处理。

        本发明为实现上述目的,采用如下技术方案:

        本发明基于图像灰度梯度和灰度统计直方图的自适应预分割方法,其特征在于包括以下步骤:

        (1)将输入的彩色图像转换为灰度图像IG;

        (2)在水平方向逐行扫描步骤(1)所述的灰度图像IG,得到灰度图像IG的每个像素在水平方向的灰度梯度,形成灰度图像IG的灰度梯度图Igrad;

        (3)计算灰度梯度:对步骤(2)所述的灰度梯度图Igrad中属于[4,255]区间的灰度梯度值进行统计平均,得到灰度图像IG的统计平均灰度梯度Gs,其中4为视觉器官可感知的最小灰度梯度,255为灰度图像IG的最大灰度梯度;将统计平均梯度Gs与视觉器官能明显感知的灰度梯度区间Ge=[16,32]比较,得到灰度图像IG的灰度梯度Gg:如Gs<16,则Gg=16;如Gg>32,则Gg=32;否则Gg=Gs;

        (4)采用灰度图像IG的所有灰度等级建立其灰度直方图HG,所述灰度直方图HG表示灰度图像IG的每个灰度等级k对应的像素数量nk,其中横轴为灰度级别k;竖轴为相应灰度级别k的像素个数nk,灰度等级k的取值范围为0至255;

        (5)扫描步骤(4)所述的灰度直方图HG,得到灰度属性列表Ak,即针对每个灰度等级k,根据其像素数量nk与其前一个灰度等级(k-1)的像素数量nk-1的大小关系,将对应的灰度属性列表Ak标记为“上升”、“下降”或“不变”:当nk>nk-1,则标记灰度级k为“上升”;当nk<nk-1,则标记灰度级k为“下降”;当nk=nk-1,则标记灰度级k为“不变”;灰度级别0和255均标记为“不变”;

        (6)扫描灰度属性列表Ak,并在灰度属性列表Ak中标记出“谷底”区域序列Bi,j(i,j∈0-255,j≥i),“谷底”区域Bi,j(i,j∈0-255,j≥i)是指灰度属性列表Ak中属性Ai为“下降”、Aj为“上升”的区间;

        (7)找到步骤(4)所述地灰度直方图HG的峰值np=MAX(nk),确定灰度直方图HG的峰值np对应的灰度等级p所对应的图像分割灰度阈值区间Tp=[t0,t1],其中MAX()表示求最大值;t0=MAX(0,p-Gg),t1=MIN(255,p+Gg),其中MIN()表示求最小值;在灰度属性列表Ak上,从t0向峰值对应的灰度等级p方向即从小到大扫描,当在[t0,p]区间找到第一个“谷底”,则取该“谷底”对应的灰度等级为新的t0值,找不到“谷底”则t0不变;同样地,从t1向峰值对应的灰度等级p方向即从大到小扫描,当在[p,t1]区间找到第一个“谷底”,则取该“谷底”对应的灰度等级为新的t1值,找不到“谷底”则t1不变;

        (8)扫描整个灰度图像IG,将灰度等级属于步骤(7)所述的图像分割灰度阈值区间Tp=[t0,t1]的像素的灰度等级设置为p;

        (9)将灰度直方图HG中满足k∈Tp=[t0,t1]的nk设为0,即nk=0;

        (10)重复步骤(7)、(8)、(9),直到灰度图像直方图的峰值为0,完成图像像素的聚类,实现图像的预分割。

        所述的基于图像灰度梯度和灰度统计直方图的自适应预分割方法,其特征在于步骤(2)所述的灰度图像IG的每个像素在水平方向的灰度梯度的求取方法如下:每行中第m个像素的灰度梯度gm=ABS(Vm-Vm-1),其中Vm、Vm-1是一行中像素m及其前一个像素m-1的灰度值,ABS()表示取绝对值,每行的第一个像素的灰度梯度为0,其中m为自然数,m∈[1,N],N为灰度图像IG中每行像素的个数。

        所述的基于图像灰度梯度和灰度统计直方图的自适应预分割方法,其特征在于步骤(3)所述的统计平均梯度Gs的方法如下:

        建立步骤(2)所述的灰度梯度图Igrad的灰度直方图Hg,对所述灰度直方图Hg区域[4,255]内的灰度等级进行加权平均,求得灰度图像IG的统计平均梯度Gs:

        Gs=λ*nλΣλ=4255nλ,λ∈[4,255],]]>

        其中λ、nλ分别为灰度梯度图Igard的每个灰度等级λ对应的像素数量nλ。

        本发明的有益效果为:本发明采用基于图像的灰度梯度信息和图像本身的灰度统计直方图信息的自适应图像预分割算法,能够很好的对图像中相似的像素进行聚类,使得图像的信息层次分明,满足图像分割等后续处理的要求,本发明方法具有约束条件少,适用范围广,算法复杂度低,实现简单,运算速度快。

        【附图说明】

        图1为本发明原始彩色图像;

        图2为本发明由原始彩色图像转换而来的灰度图像;

        图3为本发明灰度图像的灰度梯度图;

        图4为本发明灰度梯度图的梯度直方图;

        图5为本发明灰度图像的灰度直方图;

        图6本发明进行预分割后的灰度图像的灰度直方图;

        图7为本发明进行预分割后的灰度图像。

        【具体实施方式】

        下面结合附图对发明的技术方案进行详细说明:

        本实施例的一种基于图像的灰度梯度信息和图像本身的灰度统计直方图信息的自适应图像预分割算法。硬件平台为个人微型计算机,操作系统为Windows,图像开发平台为Intel?OpenCV,开发工具为Microsoft?Visual?C++。具体步骤为:

        首先将原始采集的分辨率为2560*1920的彩色图像(图1)通过cvCvtColor函数转换为灰度图像,如图2所示。

        然后针对灰度图像,对其进行水平扫描,得到图像的灰度梯度图(图3),建立灰度梯度图的灰度直方图(图4),图中横轴为像素的灰度梯度k,取0-255,每个小格代表10;竖轴为图像中相应灰度梯度的像素个数nk(其中k表示灰度梯度)。

        具体的灰度梯度图的灰度直方图数据如下表:

        表1

        ??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??0??176066??64??727??128??2??192??0

        ??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??1??118413??65??714??129??2??193??0??2??106057??66??647??130??1??194??0??3??83239??67??636??131??0??195??0??4??59936??68??640??132??0??196??0??5??42947??69??584??133??0??197??0??6??30063??70??568??134??0??198??0??7??21361??71??571??135??0??199??0??8??15896??72??511??136??0??200??0??9??11785??73??522??137??0??201??0??10??9116??74??516??138??0??202??0??11??7319??75??526??139??0??203??0??12??5875??76??506??140??0??204??0??13??5064??77??442??141??0??205??0??14??4320??78??422??142??0??206??0??15??3787??79??439??143??0??207??0??16??3489??80??410??144??0??208??0??17??3100??81??412??145??0??209??0??18??2797??82??349??146??0??210??0??19??2735??83??346??147??0??211??0??20??2471??84??376??148??0??212??0??21??2362??85??314??149??0??213??0

        ??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??22??2275??86??295??150??0??214??0??23??2124??87??288??151??0??215??0??24??2034??88??272??152??0??216??0??25??2008??89??246??153??0??217??0??26??1894??90??222??154??0??218??0??27??1736??91??209??155??0??219??0??28??1699??92??184??156??0??220??0??29??1657??93??184??157??0??221??0??30??1609??94??154??158??0??222??0??31??1583??95??153??159??0??223??0??32??1544??96??119??160??0??224??0??33??1439??97??113??161??0??225??0??34??1411??98??101??162??0??226??0??35??1345??99??98??163??0??227??0??36??1363??100??95??164??0??228??0??37??1272??101??86??165??0??229??0??38??1296??102??74??166??0??230??0??39??1282??103??54??167??0??231??0??40??1276??104??59??168??0??232??0??41??1239??105??59??169??0??233??0??42??1195??106??51??170??0??234??0

        ??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??灰度梯??度k??像素数??nk??43??1153??107??36??171??0??235??0??44??1114??108??46??172??0??236??0??45??1121??109??34??173??0??237??0??46??1159??110??33??174??0??238??0??47??1088??111??26??175??0??239??0??48??1077??112??26??176??0??240??0??49??1049??113??26??177??0??241??0??50??1061??114??16??178??0??242??0??51??1051??115??19??179??0??243??0??52??1010??116??11??180??0??244??0??53??996??117??20??181??0??245??0??54??999??118??17??182??0??246??0??55??914??119??11??183??0??247??0??56??884??120??12??184??0??248??0??57??865??121??7??185??0??249??0??58??831??122??8??186??0??250??0??59??789??123??3??187??0??251??0??60??801??124??2??188??0??252??0??61??809??125??3??189??0??253??0??62??777??126??3??190??0??254??0??63??745??127??2??191??0??255??0

        在直方图中,对区域[4,255]内的灰度梯度进行加权平均,求得图像的统计平均梯度值Gs,公式为:λ∈[4,255],其中λ、nλ分别为灰度梯度图Igrad的每个灰度等级λ对应的像素数量nλ。算得Gs=16。

        将统计平均梯度Gs与视觉器官能明显感知的灰度梯度区间Ge=[16,32]比较,得到图像IG的平均灰度梯度Gg:如Gs<16,则Gg=16;如Gs>32,则Gg=32;否则Gg=Gs。最终确定Gg=16。

        对图像的预分割过程如下:

        a)得到原始灰度图像的灰度直方图HG(图5)。

        b)找到灰度直方图HG的峰值np=MAX(nk)(k=0-255),确定该峰值对应的灰度等级p对应的图像分割灰度阈值区间Tp=[t0,t1]。默认情况下,t0=MAX(0,p-Gg),t1=MIN(255,p+Gg)。在灰度属性列表Ak(k=0-255)上,从t0向p方向(从小到大)扫描,如在[t0,p]区间找到第一个“谷底”,则取该“谷底”对应的灰度等级为新的t0值,找不到“谷底”则t0不变。同样地,从t1向p方向(从大到小)扫描,如在[p,t1]区间找到第一个“谷底”,则取该“谷底”对应的灰度等级为新的t1值,找不到“谷底”则t1不变。

        计算得到第一轮像素聚类时,p=137,对应的图像分割灰度阈值区间Tp=[t0,t1]=[109,153],即与灰度级137相似的像素灰度区间为[109,153]。

        遍历灰度图像,对于灰度值落在灰度阈值区间Tp([109,153])内的像素,即设置其灰度值为p(137)。完成第一轮像素聚类。

        c)将灰度直方图HG中满足k∈Tp=[t0,t1]的nk设为0。即

        d)重复步骤b)、c),直到灰度图像直方图的峰值为0,则完成所有图像像素的聚类,实现整个灰度图像从连续灰度空间到离散灰度空间的变换,即预分割。得到进行预分割后的灰度图像的灰度直方图(图6)及进行聚类后的灰度图像(图7)。

    关 键 词:
    基于 图像 灰度 梯度 统计 直方图 自适应 分割 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基于图像灰度梯度和灰度统计直方图的自适应预分割方法.pdf
    链接地址://www.4mum.com.cn/p-5781855.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03