• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 11
    • 下载费用:30 金币  

    重庆时时彩优博客户端: 能量可控的连续HOPFIELD神经网络及优化求解方法.pdf

    关 键 词:
    能量 可控 连续 HOPFIELD 神经网络 优化 求解 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    摘要
    申请专利号:

    CN201310594388.8

    申请日:

    2013.11.21

    公开号:

    CN103646283A

    公开日:

    2014.03.19

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 授权|||实质审查的生效IPC(主分类):G06N 3/02申请日:20131121|||公开
    IPC分类号: G06N3/02; G06F17/11 主分类号: G06N3/02
    申请人: 中国民航大学
    发明人: 费春国; 陈维兴; 张积洪
    地址: 300300 天津市东丽区津北公路2898号
    优先权:
    专利代理机构: 天津才智专利商标代理有限公司 12108 代理人: 庞学欣
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201310594388.8

    授权公告号:

    ||||||

    法律状态公告日:

    2016.01.13|||2014.04.16|||2014.03.19

    法律状态类型:

    授权|||实质审查的生效|||公开

    摘要

    一种能量可控的连续Hopfield神经网络及优化求解方法。神经网络包括:多个神经元、连接权值、控制器和神经元输出;多个神经元包括神经元S1…Sn;多个连接权值包括连接权值W11…W1n、W21…W2n…Wn1…Wnn;多个控制器包括控制器u1…un;多个神经元输出包括多个神经元输出x1…xn。本发明提供的能量可控的连续Hopfield神经网络可以用软件或硬件实现;针对不同特性的优化问题,设置不同控制量ui,使得网络有针对性地求解优化问题,提高求解效率和准确性?;箍赏ü柚貌煌目刂屏縰i控制网络按照指定的搜索路径搜索优化问题的解。

    权利要求书

    权利要求书
    1.  一种能量可控的连续Hopfield神经网络,其特征在于:其包括:多个神经元(1)、连接权值(2)、控制器(3)和神经元输出(4);多个神经元(1)包括神经元S1…Sn;多个连接权值(2)包括连接权值W11…W1n、W21…W2n…Wn1…Wnn;多个控制器(3)包括控制器u1…un;多个神经元输出(4)包括多个神经元输出x1…xn;其中:控制器u1…un为神经元的控制输入,其分别与神经元S1…Sn相连接;神经元输出x1…xn为神经元S1…Sn的输出信号,其分别与神经元S1…Sn相连接;每个神经元具有n个输入端,神经元S1的n个输入端分别与连接权值W11…W1n相连接,以此类推,神经元Sn的n个输入端分别与连接权值Wn1…Wnn相连接;连接权值W11的输入端分别与连接权值W21…Wn1的输入端相连接、同时还与神经元S1的神经元输出x1相连接;以此类推,连接权值W1n的输入端分别与连接权值W2n…Wnn的输入端相连接,同时还与神经元Sn的神经元输出xn相连接。 

    2.  根据权利要求1所述的能量可控的连续Hopfield神经网络,其特征在于:所述的神经元(1)由累加器∑、连续且单调递增的神经元激活函数ψ以及电阻和电容来实现,或者由功能类似的函数或硬件来实现,神经网络的动态方程为: 

    其中:xi,i=1,2,L,n,是第i个神经元的输出;yi,i=1,2,L,n,是 第i个神经元内部状态;Wij,i,j=1,2,L,n,是第i个神经元与第j个神经元的连接权值;ui是外部输入的控制量;k,α,β,ε为常数; 
    此神经网络的能量函数为:其中积分项表示一种内部状态和输出值关系的能量项。 

    3.  根据权利要求1所述的能量可控的连续Hopfield神经网络,其特征在于:所述的神经元(1)内部状态的起始值为在[-1,1]连续范围内的随机数。 

    4.  根据权利要求1所述的能量可控的连续Hopfield神经网络,其特征在于:当所述的连接权值(2)用矩阵表示时,该矩阵应为对称矩阵;所述连接权值或者是正或者是负。 

    5.  一种如权利要求1所述的能量可控的连续Hopfield神经网络的优化求解方法,其特征在于:所述的优化求解方法包括按顺序进行的下列步骤: 
    步骤一、建立能量函数的S01阶段:为所求解的优化问题建立一个能量函数E; 
    步骤二、设置参数初始值的S02阶段:设置yi的起始值为[-1,1]的连续范围内的随机数;设置k,α,β,ε值为任意实数; 
    步骤三、制定控制定律的S03阶段:根据优化问题的特性,设置ui的控制规律; 
    步骤四、设置最大迭代步数的S04阶段:根据具体情况设定最大迭代步数; 
    步骤五、计算所有神经元输出的初始值的S05阶段:根据初始的内部状态yi和ui,计算所有神经网络神经元输出的初始值xi; 
    步骤六、根据串行工作方式,更新神经元内部状态和输出的S06阶段:以串行工作方式,根据神经网络的动态方程和当前的xi和yi,更新神经网络的所有神经元内部状态yi和神经元输出xi,完成一次神经网络的迭代; 
    步骤七、计算优化目标函数结果的S07阶段:根据神经网络神经元的输出计算能量函数的结果; 
    步骤八、判断是否优于上一次结果的S08阶段:检查此计算结果是否比上一次的计算结果好,如判断结果为“是”,则进入下一步S09阶段,否则下一步进入S10阶段; 
    步骤九、保留此结果的S09阶段:保存此次计算的结果,然后进入下一步S11阶段; 
    步骤十、放弃此结果的S10阶段,放弃此次计算的结果,然后进入下一步S11阶段; 
    步骤十一、判断是否达到最大迭代步数的S11阶段:判断是否达到设置的最大迭代步数,如果判断结果为“是”,则进入下一步S13阶段,否则下一步进入S12阶段; 
    步骤十二、更新控制量的S12阶段:根据ui的变换规则,更新ui的值,然后下一步重新进入S06阶段; 
    步骤十三、输出最终结果的S13阶段:输出S09阶段所保存的计算结果,结束迭代,求得能量函数的最优值,也就是要求解的优化问题的最优值;本流程至此结束。 

    6.  根据权利要求6所述的优化求解方法,其特征在于:在S01阶段中,所述的建立能量函数的方法为:首先为所求解的优化问题建立一个能量函数E,并将此能量函数映射到所述的能量可控的连 续Hopfield神经网络中,映射后的神经网络动态方程为: 
    。

    7.  根据权利要求6所述的优化求解方法,其特征在于:在S03阶段中,所述的设置ui的控制规律采用如下的控制量设计方法: 
    (1)先设计控制量控制此神经网络能量上升到最大值,然后控制此神经网络能量慢慢下降,搜索最优解;如果得到的结果满意,则停止,否则控制此神经网络能量再次上升到最大值,改变控制量的大小并满足网络能量下降的条件,以不同的下降速度控制此神经网络能量下降,重新搜索最优解;重复上述过程n次,从中找到较好的解作为最终的结论; 
    (2)当所设计控制量使此神经网络陷入局部最小或不合理解,通过设计控制量控制此神经网络能量增加逃离局部最小或不合理解,然后重新设定控制量的大小,并控制此神经网络保持下降条件,改变下降的方向和幅度,从而改变此神经网络搜索的路径,进行优化求解。 

    说明书

    说明书能量可控的连续Hopfield神经网络及优化求解方法
    技术领域
    本发明属于神经网络技术领域,特别是涉及一种能量可控的连续Hopfield神经网络及优化求解方法。 
    背景技术
    自从连续Hopfield神经网络问世以来,在求解优化问题、联想记忆、模式辨识以及图像处理等领域已经得到了广泛的应用。特别是在优化领域,连续Hopfield神经网络更是大显身手。但是,现有连续Hopfield神经网络和其相关的改进神经网络都是根据网络自身的神经元的运算来进行优化求解的。当网络的参数设定好,并将问题映射到网络能量函数后,网络只能靠自身的迭代搜索能量函数最优解,即为优化问题的最优解,但是,由于网络参数的设定没有针对性,所以使搜索比较盲目,效率较低;因此,能通过控制其网络的能量,改变能量函数值,从而能根据不同优化问题的特性,按照预定设计好的搜索方向或路径进行优化问题求解,将是对连续Hopfield网络的一个突破性的改进,必将提高其优化求解能力,具有十分重要的理论价值和现实意义。 
    发明内容
    为了解决上述问题,本发明的目的在于提供一种能量可控的连续Hopfield神经网络及优化求解方法。 
    为了达到上述目的,本发明提供的能量可控的连续Hopfield神经网络包括:多个神经元、连接权值、控制器和神经元输出;多个神经元包括神经元S1…Sn;多个连接权值包括连接权值W11…W1n、W21…W2n…Wn1…Wnn;多个控制器包括控制器u1… un;多个神经元输出包括多个神经元输出x1…xn;其中:控制器u1…un为神经元的控制输入,其分别与神经元S1…Sn相连接;神经元输出x1…xn为神经元S1…Sn的输出信号,其分别与神经元S1…Sn相连接;每个神经元具有n个输入端,神经元S1的n个输入端分别与连接权值W11…W1n相连接,以此类推,神经元Sn的n个输入端分别与连接权值Wn1…Wnn相连接;连接权值W11的输入端分别与连接权值W21…Wn1的输入端相连接、同时还与神经元S1的神经元输出x1相连接;以此类推,连接权值W1n的输入端分别与连接权值W2n…Wnn的输入端相连接,同时还与神经元Sn的神经元输出xn相连接。 
    所述的神经元由累加器∑、连续且单调递增的神经元激活函数ψ以及电阻和电容来实现,或者由功能类似的函数或硬件来实现,神经网络的动态方程为: 
    dyidt=-kyi+αΣj=1nWijxjxi=ψ(yi)+ui=11+e-yi/ϵ+ui]]>
    其中:xi,i=1,2,L,n,是第i个神经元的输出;yi,i=1,2,L,n,是第i个神经元内部状态;Wij,i,j=1,2,L,n,是第i个神经元与第j个神经元的连接权值;ui是外部输入的控制量;k,α,β,ε为常数; 
    此神经网络的能量函数为:其中积分项表示一种内部状态和输出值关系的能量项。 
    所述的神经元内部状态的起始值为在[-1,1]连续范围内的随机数。 
    当所述的连接权值用矩阵表示时,该矩阵应为对称矩阵;所述连接权值或者是正或者是负。 
    本发明提供的能量可控的连续Hopfield神经网络的优化求解方法包括按顺序进行的下列步骤: 
    步骤一、建立能量函数的S01阶段:为所求解的优化问题建立一个能量函数E; 
    步骤二、设置参数初始值的S02阶段:设置yi的起始值为[-1,1]的连续范围内的随机数;设置k,α,β,ε值为任意实数; 
    步骤三、制定控制定律的S03阶段:根据优化问题的特性,设置ui的控制规律; 
    步骤四、设置最大迭代步数的S04阶段:根据具体情况设定最大迭代步数; 
    步骤五、计算所有神经元输出的初始值的S05阶段:根据初始的内部状态yi和ui,计算所有神经网络神经元输出的初始值xi; 
    步骤六、根据串行工作方式,更新神经元内部状态和输出的S06阶段:以串行工作方式,根据神经网络的动态方程和当前的xi和yi,更新神经网络的所有神经元内部状态yi和神经元输出xi,完成一次神经网络的迭代; 
    步骤七、计算优化目标函数结果的S07阶段:根据神经网络神经元的输出计算能量函数的结果; 
    步骤八、判断是否优于上一次结果的S08阶段:检查此计算结果是否比上一次的计算结果好,如判断结果为“是”,则进入下一步S09阶段,否则下一步进入S10阶段; 
    步骤九、保留此结果的S09阶段:保存此次计算的结果,然后 进入下一步S11阶段; 
    步骤十、放弃此结果的S10阶段,放弃此次计算的结果,然后进入下一步S11阶段; 
    步骤十一、判断是否达到最大迭代步数的S11阶段:判断是否达到设置的最大迭代步数,如果判断结果为“是”,则进入下一步S13阶段,否则下一步进入S12阶段; 
    步骤十二、更新控制量的S12阶段:根据ui的变换规则,更新ui的值,然后下一步重新进入S06阶段; 
    步骤十三、输出最终结果的S13阶段:输出S09阶段所保存的计算结果,结束迭代,求得能量函数的最优值,也就是要求解的优化问题的最优值;本流程至此结束。 
    在S01阶段中,所述的建立能量函数的方法为:首先为所求解的优化问题建立一个能量函数E,并将此能量函数映射到所述的能量可控的连续Hopfield神经网络中,映射后的神经网络动态方程为: 
    dyidt=-kyi+αΣj=1nWijxjxi=ψ(yi)+ui=11+e-yi/ϵ+ui]]>
    在S03阶段中,所述的设置ui的控制规律采用如下的控制量设计方法: 
    (1)先设计控制量控制此神经网络能量上升到最大值,然后控制此神经网络能量慢慢下降,搜索最优解;如果得到的结果满意,则停止,否则控制此神经网络能量再次上升到最大值,改变控制量的大小并满足网络能量下降的条件,以不同的下降速度控制此神经网络能量下降,重新搜索最优解;重复上述过程n次,从中找到较 好的解作为最终的结论; 
    (2)当所设计控制量使此神经网络陷入局部最小或不合理解,通过设计控制量控制此神经网络能量增加逃离局部最小或不合理解,然后重新设定控制量的大小,并控制此神经网络保持下降条件,改变下降的方向和幅度,从而改变此神经网络搜索的路径,进行优化求解。 
    本发明提供的能量可控的连续Hopfield神经网络可以用软件或硬件实现;针对不同特性的优化问题,设置不同控制量ui,使得网络有针对性地求解优化问题,提高求解效率和准确性?;箍赏ü柚貌煌目刂屏縰i控制网络按照指定的搜索路径搜索优化问题的解。 
    附图说明
    图1为本发明提供的能量可控的连续Hopfield神经网络示意图。 
    图2为本发明提供的能量可控的连续Hopfield神经网络的优化求解方法流程图。 
    具体实施方式
    下面结合附图和具体实施例对本发明提供的能量可控的连续Hopfield神经网络及优化求解方法进行详细说明。 
    如图1所示,本发明提供的能量可控的连续Hopfield神经网络包括:多个神经元1、连接权值2、控制器3和神经元输出4;多个神经元1包括神经元S1…Sn;多个连接权值2包括连接权值W11…W1n、W21…W2n…Wn1…Wnn;多个控制器3包括控制器u1…un;多个神经元输出4包括多个神经元输出x1…xn;其中:控制器u1…un为神经元的控制输入,其分别与神经元S1…Sn相连接;神经元输 出x1…xn为神经元S1…Sn的输出信号,其分别与神经元S1…Sn相连接;每个神经元具有n个输入端,神经元S1的n个输入端分别与连接权值W11…W1n相连接,以此类推,神经元Sn的n个输入端分别与连接权值Wn1…Wnn相连接;连接权值W11的输入端分别与连接权值W21…Wn1的输入端相连接、同时还与神经元S1的神经元输出x1相连接;以此类推,连接权值W1n的输入端分别与连接权值W2n…Wnn的输入端相连接,同时还与神经元Sn的神经元输出xn相连接; 
    所述的神经元1由累加器∑、连续且单调递增的神经元激活函数ψ以及电阻和电容来实现,或者由功能类似的函数或硬件来实现,神经网络的动态方程为: 
    dyidt=-kyi+αΣj=1nWijxjxi=ψ(yi)+ui=11+e-yi/ϵ+ui]]>
    其中:xi,i=1,2,L,n,是第i个神经元的输出;yi,i=1,2,L,n,是第i个神经元内部状态;Wij,i,j=1,2,L,n,是第i个神经元与第j个神经元的连接权值;ui是外部输入的控制量;k,α,β,ε为常数; 
    当设n=2,k=α=1,ε=1/250,W11=W22=1,W12=W21=1.5时,建立的神经网络为 
    dy1dt=-y1+(W11x1+W12x2)dy2dt=-y2+(W21x1+W22x2)x1=ψ(y1)=11+e-y1/ϵ+uix2=ψ(y2)=11+e-y2/ϵ+u2]]>
    即 
    dy1dt=-y1+(1x1+1.5x2)dy2dt=-y2+(1.5x1+1x2)x1=ψ(y1)=11+e-250y1+u1x2=ψ(y2)=11+e-250y2+u2]]>
    此神经网络的能量函数为:其中积分项表示一种内部状态和输出值关系的能量项。 
    所述的神经元1内部状态的起始值为在[-1,1]连续范围内的随机数。 
    当所述的连接权值2用矩阵表示时,该矩阵应为对称矩阵。 
    所述连接权值或者是正或者是负。 
    能量可控的连续Hopfield神经网络使用串行工作方式,即在某一时刻只有一个神经元1按照神经网络动态方程改变状态,而其它神经元的输出不变;这一变化的神经元按照随机的方式,或者按照预定的顺序来选择;当所有的神经元状态都更新一次称为迭代一次。 
    能量可控的连续Hopfield神经网络控制规律为:对于能量可控的连续Hopfield神经网络,若ψ-1为单调递增且连续可导,wij=wji,网络以异步迭代方式运行。则有下面的结论: 
    (1)当控制量ui<0时 
    如果或则有控制量控制网络能量下降; 
    如果则有控制量控制网络能量上升; 
    (2)当控制量ui>0时 
    如果则有控制量控制网络能量下降; 
    如果则有控制量控制网络能量上升; 
    (3)当且仅当或时,控制量控制网络能量不变; 
    所述的外部所加的控制量根据一定的控制规律,可控制神经网络的能量上升、下降或不变。 
    所述的神经网络能够硬件实现,也能软件实现。当用软件实现此神经网络时,所求解优化问题的优化目标函数变量设置为神经网络的神经元输出xi,优化问题有几个变量就设置几个神经网络神经元的输出xi,此优化目标函数就是要映射到神经网络的能量函数E。当用硬件实现时,要根据优化问题设置连接权值和神经元内部硬件参数。 
    如图2所示,本发明提供的能量可控的连续Hopfield神经网络的优化求解方法包括按顺序进行的下列步骤: 
    步骤一、建立能量函数的S01阶段:为所求解的优化问题建立一个能量函数E; 
    步骤二、设置参数初始值的S02阶段:设置yi的起始值为[-1,1]的连续范围内的随机数;设置k,α,β,ε值为任意实数; 
    步骤三、制定控制定律的S03阶段:根据优化问题的特性,设置ui的控制规律; 
    步骤四、设置最大迭代步数的S04阶段:根据具体情况设定最大迭代步数; 
    步骤五、计算所有神经元输出的初始值的S05阶段:根据初始的内部状态yi和ui,计算所有神经网络神经元输出的初始值xi; 
    步骤六、根据串行工作方式,更新神经元内部状态和输出的S06阶段:以串行工作方式,根据神经网络的动态方程和当前的xi和yi,更新神经网络的所有神经元内部状态yi和神经元输出xi,完成一次神经网络的迭代; 
    步骤七、计算优化目标函数结果的S07阶段:根据神经网络神经元的输出计算能量函数的结果; 
    步骤八、判断是否优于上一次结果的S08阶段:检查此计算结果是否是比上一次的计算结果好,如判断结果为“是”,则进入下一步S09阶段,否则下一步进入S10阶段; 
    步骤九、保留此结果的S09阶段:保存此次计算的结果,然后进入下一步S11阶段; 
    步骤十、放弃此结果的S10阶段,放弃此次计算的结果,然后进入下一步S11阶段; 
    步骤十一、判断是否达到最大迭代步数的S11阶段:判断是否 达到设置的最大迭代步数,如果判断结果为“是”,则进入下一步S13阶段,否则下一步进入S12阶段; 
    步骤十二、更新控制量的S12阶段:根据ui的变换规则,更新ui的值,然后下一步重新进入S06阶段; 
    步骤十三、输出最终结果的S13阶段:输出S09阶段所保存的计算结果,结束迭代,求得能量函数的最优值,也就是要求解的优化问题的最优值;本流程至此结束。 
    在S01阶段中,所述的建立能量函数的方法为:首先为所求解的优化问题建立一个能量函数E,并将此能量函数映射到所述的能量可控的连续Hopfield神经网络中,映射后的神经网络动态方程为: 
    dyidt=-kyi+αΣj=1nWijxjxi=ψ(yi)+ui=11+e-yi/&epsiv;+ui]]>
    在S03阶段中,所述的设置ui的控制规律采用如下的控制量设计方法: 
    (1)先设计控制量控制此神经网络能量上升到最大值,然后控制此神经网络能量慢慢下降,搜索最优解。如果得到的结果满意,则停止,否则控制此神经网络能量再次上升到最大值,改变控制量的大小并满足网络能量下降的条件,以不同的下降速度控制此神经网络能量下降,重新搜索最优解。重复上述过程n次,从中找到较好的解作为最终的结论; 
    (2)当所设计控制量使此神经网络陷入局部最小或不合理解,可以通过设计控制量,控制此神经网络能量增加逃离局部最小或不 合理解。然后,重新设定控制量的大小,并控制此神经网络保持下降条件,改变下降的方向和幅度,从而改变此神经网络搜索的路径,进行优化求解; 
    (3)当此神经网络搜索最优解的过程中,控制量的作用随着搜索过程不断减弱或撤销; 
    (4)针对不同的优化问题特性,设计控制量ui控制网络按照指定的搜索路径搜索优化问题的解。 

    关于本文
    本文标题:能量可控的连续HOPFIELD神经网络及优化求解方法.pdf
    链接地址://www.4mum.com.cn/p-5779439.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
  • 欢乐升级游戏 14场胜负彩开奖结果奖金数 广西麻将软件外挂 老k棋牌游戏官网充值 葡京娱乐场官网 河北快三跨度走势:表 69棋牌下载 意甲直播间 国标麻将番种 今天的股票行情走势 重庆欢乐生肖是国家的吗 正点彩票游戏 广东好彩1怎么玩 大富婆网址 黑龙江36选7开兑奖 青海11选5电子走势图