• 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03
    • / 20
    • 下载费用:30 金币  

    重庆时时彩遗漏是什么意思: 计及需求响应的多时间尺度微网能量控制方法.pdf

    摘要
    申请专利号:

    重庆时时彩单双窍门 www.4mum.com.cn CN201310290229.9

    申请日:

    2013.07.11

    公开号:

    CN103346562A

    公开日:

    2013.10.09

    当前法律状态:

    授权

    有效性:

    有权

    法律详情: 专利权人的姓名或者名称、地址的变更IPC(主分类):H02J 3/00变更事项:专利权人变更前:江苏省电力设计院变更后:中国能源建设集团江苏省电力设计院有限公司变更事项:地址变更前:210009 江苏省南京市鼓楼区新模范马路5号变更后:210009 江苏省南京市鼓楼区新模范马路5号|||授权|||实质审查的生效IPC(主分类):H02J 3/00申请日:20130711|||公开
    IPC分类号: H02J3/00; G06F19/00(2011.01)I 主分类号: H02J3/00
    申请人: 江苏省电力设计院
    发明人: 宗柳; 孙纯军; 王作民; 朱东升; 钱康; 牛涛; 李桃; 苏麟; 巫怀军
    地址: 210009 江苏省南京市鼓楼区新模范马路5号
    优先权:
    专利代理机构: 南京纵横知识产权代理有限公司 32224 代理人: 董建林;许婉静
    PDF完整版下载: PDF下载
    法律状态
    申请(专利)号:

    CN201310290229.9

    授权公告号:

    |||||||||

    法律状态公告日:

    2015.08.05|||2015.06.17|||2013.11.06|||2013.10.09

    法律状态类型:

    专利权人的姓名或者名称、地址的变更|||授权|||实质审查的生效|||公开

    摘要

    本发明公开了一种计及需求响应的多时间尺度微网能量控制方法,以微电网运行成本最低为目标,结合微电源发电特性和需求响应负荷用电特性差异,给出用户侧负荷可中断容量限值、发电单元功率输出限值、爬坡约束,储能单元存储容量约束、交互最大容量等约束条件,利用遗传优化算法在多时间尺度下寻求保证环境效益最优下的经济组合,间接的减少了主电网的调频和备用容量,提高了电网全周期运行的经济性。

    权利要求书

    权利要求书
    1.  一种计及需求响应的多时间尺度微网能量控制方法,其特征在于,包括以下步骤:利用微网能量管理系统进行以下控制:
    1)日前调度控制方法:
    11)调度风力发电资源,在风力发电量占微电网总需求容量的比例不超过设定值的条件下,风力发电量全额上网,否则超出容量按发电价格从低到高的顺序依次切断风力发电机组直至满足设定值要求;
    12)调度光伏发电,如果满足电网运行约束,则全额上网,否则按发电价格从低到高的顺序,以汇流的集电线路为单位依次切断光伏发电??橹敝谅愕缤诵性际?;
    13)调度微型燃气轮机发电机,以冷/热负荷需求量确定发电量;
    14)调度柴油机,以柴油发电机最佳运行点确定调度容量;
    15)可中断负荷容量和大电网容量根据目标函数采取竞价上网的方式利用遗传算法进行能量优化控制;
    2)实时调度控制方法:根据微电源在实时阶段的发电量和用电负荷,计算容量缺额ΔP=P用电-P发电,P发电为发电量,P用电为用电负荷:
    如果出现容量缺额,则按以下步骤控制
    211)以微型燃气轮机发电机的冷/热负荷需求量确定发电量的上限为标准,进行容量调度;
    212)以柴油机最高效率可调上限为标准,进行容量调度;
    213)调用正在放电的储能设备;
    214)调用处于备用状态的储能设备;
    215)根据容量缺额情况,调整微型燃气轮机发电机和柴油机可调上下限进 行滚动调度;
    216)剩下的容量缺额从大电网调度;
    如果出现容量过剩,则按以下步骤控制:
    221)对处于备用的储能设备进行充电;
    222)减少大电网调度容量至并网状态下的最低限值,并进行一定赔偿;
    223)减少可中断负荷调度容量至零,并进行容量赔偿;
    224)减少柴油机发电量,如切机容量低于柴油机最佳运行下限,则按运行成本和爬坡速率的综合排名进行柴油机的整台切除;
    3)超短期调度控制方法:根据微电源、可控负荷在超短期阶段的发电量和用电负荷计算容量缺额ΔP=P用电-P发电,
    如果出现容量缺额,则直接负荷控制容量和大电网容量利用遗传算法采取竞价上网的方式进行能量优化调度;
    如果出现容量过剩,则按31)-34)步骤控制:
    31)对处于备用的储能设备进行充电;
    32)减少大电网调度容量至并网状态下的最低限值,并进行一定赔偿;
    33)减少可中断负荷调度容量至零,并进行容量赔偿;
    34)减少柴油机发电量,如切机容量低于其最佳运行下限,则按运行成本和爬坡速率的综合排名进行柴油机的整台切除。

    2.  根据权利要求1所述的计及需求响应的多时间尺度微网能量控制方法,其特征在于,微网能量管理系统的模型为:
    1)光伏电池组:
    V≥Vpv.min---(1)]]>
    式中:V为光伏电池组实际输出功率下的端电压,VPV.min为光伏电池组的最 小输出功率下的端电压;
    2)风力发电机组:启动条件为:
    Pless≥PwN---(2)]]>
    Δtws≥tws.min---(3)]]>
    式中Pless为系统缺额功率;PwN为单台风电机组的额定功率;Δtws为风电机组?;奔?;tws.min为风电机组的最小?;奔?;
    当式(2)和式(3)满足时,投入风电机组;风电机组?;奔渎阕钚⊥;奔湟?,优先投入已切除时间较长的风电机组;检测满足风电机组开启条件的风电机组台数S,如果S>1,则根据投切需要将S台风电机组依次启动;需要切除风电机组时,应优先切除已投入时间Δtws较大的风电机组;
    3)根据负荷波动范围的大小,决定先切除光伏系统还是风电机组;如果负荷小范围波动即ΔP≤w1Pall,优先调节光伏系统发电,如果负荷大范围跌落,即ΔP≤w2Pall,容量大于整台风机容量,则风机整台切除:
    4)微型燃气轮机发电机:由冷/热负荷确定微型燃气轮机发电机的出力:
    QWT=PMT(1-ηMT-ηI)ηMT---(4)]]>
    Qho=QMT×ηrec×COPho---(5)]]>
    Qco=QMT×ηrec×COPCO---(6)]]>
    ηrec=T1-T2T1-T0---(7)]]>
    其中,QMT为燃气轮机排气余热量,kW;ηI为燃气轮机散热损系数,本模型中取0.03;PMT为时间间隔内的净输出电功率,kW;ηMT为时间间隔内的机组效率。另有,Qho、Qco分别为燃气轮机烟气余热提供的制热量和制冷量,kW;COPho、COPco分别为制热系数和制冷系数,本模型中分别为1.2和0.95;ηrec为烟气余热回收效率;T0为环境温度,K;T1、T2分别为余热烟气进出溴冷机的温度,K, 本模型中取573.15K和423.15K;
    5)柴油机组:满足
    P≥Pmin---(8)]]>
    tm≥tm.min---(9)]]>
    式中:P为柴油机发电功率;Pmin为柴油机发电效率最优下的最小发电功率;tm为柴油机的运行时间;tm.min为柴油机的最小运行时间;
    6)储能设备:充放电量控制在正常充放电区域,
    20%SOC80%---(10)]]>
    SOC为储能设备的荷电状态值。

    3.  根据权利要求1所述的计及需求响应的多时间尺度微网能量控制方法,其特征在于,微网能量管理系统的单目标优化目标函数为:
    日前优化目标函数:minCOPE(pt)=∫OT[Σa=1sCLa(Pjt)+CPE(Pgridt)]dt---(11)]]>
    超短期优化目标函数:minCOPE(pt)=∫OT[Σa=1sCLa(Pjt)+CPE(Pgridt)]dt---(12)]]>
    式中:COPE为微电网的运行成本;j为系统中需求响应负荷的编号;Pjt为需求响应负荷的有功功率切除量;CLa为第a个需求响应用户的切负荷成本;CPE为微电网从大电网购电的支出;Pgridt为微电网与大电网的交互功率,Pt为微电网所需有功功率总量,t为当前能量调度时刻,T为能量调度安排时段,S为需求响应负荷的类型数量最大值。
    微网能量管理系统的约束条件为:
    等式约束条件包括:
    1)电负荷需求平衡:Σi=1N∫t-δtPitdt+Σj=1M∫t-δtPitdt+∫t-δtPgridtdt=∫t-δtPLtdt---(13)]]>
    注:Pit为第i个微电源的功率输出(储能设备功率放电时,Pit为正;储能设备功率充电时,Pit为正),Pjt为第j个用户提供的切断负荷量,Pgridt为微电网 与大电网间的交互功率(离网阶段,Pgridt为零);PLt为负荷需求功率,δ为能量
    调度安排时段;
    2)冷热负荷需求平衡:Σi=1NQit+Σj=1MQjt=QLt---(14)]]>
    Qit为第j台微型燃气轮机发电机供热/冷量;N为微型燃气轮机发电机总台数;Qjt为其他方式的供热/冷量;M为其他方式供热/冷机组数量;QLt为用户需求供热/冷量。
    不等式约束条件:
    微电源功率输出限制:PiminPitPimax---(15)]]>
    Pit为微电源功率输出值,为微电源功率输出最小允许值,为微电源功率输出最大允许值,
    启停时间限制:Td≥Td.min---(16)]]>
    TS≥Ts.min---(17)]]>
    注:Td为微电源机组运行时间;Td.min为微电源机组最小允许运行时间;TS为微电源机组?;奔?;Ts.min为微电源机组最小允许?;奔?;
    交互容量约束:PlineminPlinetPlinemax---(18)]]>
    并网阶段,微电网系统与主电网系统能够允许交互的最大容量约束,是两者之间所达成的供求协议或者联络线的物理传输容量限制;Plinet为微电网系统与主电网系统的联络线传输功率;为允许交互的最小功率约束;为允许交互的最大功率约束;
    爬坡速率约束:V≥Vmin---(19)]]>
    v为微电源对应调度阶段的爬坡速度;Vmin为微网能量管理系统给出爬坡速度要求的最小值;
    输电线潮流约束:IlineminIt.lineIlinemax---(20)]]>
    It.line为第t条输电线的潮流值;为第t条输电线的潮流约束最小值;为第t条输电线的潮流约束最大值;
    节点电压约束:UpointminUt.pointUpointmax---(21)]]>
    Ut.point为第t节点的电压值;为第t节点的电压上下限;
    微电源中标占比约束:
    为第i类微电源在总发电容量中的百分比;为第i类微电源在总发电容量中的百分比上限;i类微电源主要有风力发电机和柴油机等旋转发电设备;
    储能设备约束:储能系统存在放电状态udish(t)、备用状态ustandby(t)、最大充电功率充电状态uch(t)、半功率充电状态usup-ch(t)4种状态:
    运行状态约束:udish(t)+ustandby(t)+uch(t)+usup-ch(t)=1---(23)]]>
    放电功率约束:Pdish(t)Npulse(t)prate---(24)]]>
    脉冲因素取为0.8≤Npulse(t)≤1,且Npulse(t)=Npulse(t+δ),Pdish为储能系统的放电功率,prate为储能系统的额定功率;充电功率约束:
    0Pch(t)1.2Prate---(25)]]>
    Pch(t)=Pch(t+δ)---(26)]]>
    Psup-ch(t)=Psup-ch(t)=0.5Pch(t)---(27)]]>
    Pch为储能系统的充电功率,Psup-ch为储能系统的半充电功率,Prate为储能系统的额定功率;
    储能设备能量状态约束:Ebat_minEbat(t)Ebat_max---(28)]]>
    Ebat为储能设备充放电能量,Ebat_max为储能设备最大充放电容量,Ebat_min为储能设备最小充放电容量;
    充放电次数约束:
    Σk=0NT|udish[t0+(k+1)δ]-udish(t0+)|λ1---(29)]]>
    Σk=0NT|uch[t0+(k+1)δ]-uch(t0+)|λ2---(30)]]>
    Σk=0NT|usup-ch[t0+(k+1)δ]-usup-ch(t0+)|λ2---(31)]]>
    式中λ1、λ2为充放电次数,t0为储能设备初始调度时刻,(k+1)为储能设备的调度阶段数量,NT为调度储能设备的总时段数量。

    说明书

    说明书计及需求响应的多时间尺度微网能量控制方法
    技术领域
    本发明涉及一种微网能量的协调控制方法,属于微电网控制技术领域。
    背景技术
    广义上说,需求响应(DR)可以定义为:电力市场中的用户针对市场价格信号或者激励机制做出响应,并改变正常电力消费模式的市场参与行为。与有序用电的强制限电拉闸来保证电力系统安全运行的做法不同的是,需求响应力争在对工农业生产和居民舒适度影响降到最低的前提下来有效的控制负荷,并适当的采取一系列补偿措施激励用户,使其主动积极响应控制策略。智能电网的发展推动了需求响应的实施,使得需求响应的受众面得到了很大的扩展,而不在局限于高负荷的工业用户。有关资料显示,面向中小用户甚至扩展到某些用电设备的调度比发电设备更加灵活,将是未来智能电网发展过程中一个重要特点,也是为了消纳可再生能源所采取的必要手段,所以把需求响应资源纳入到微网能量管理的范畴,与分布式电源调度相配合是优化管理的一个重要手段。
    根据美国能源部的研究报告,可以按照用户不同的响应方式将电力市场下的DR划分为以下2种类型:基于价格的DR(price-based DR)和基于激励的DR(incentive-based DR)。
    基于价格的DR是指用户响应零售电价的变化并相应地调整用电需求,包括分时电价(TOU—time-of-use pricing)、实时电价(RTP—real-time pricing)和尖峰电价(CPP—critical peak pricing)等。用户通过能量管理系统的经济决策过程,将用电时段调整到低电价时段,并在高电价时段减少用电,来实现减少电费支出的目的。参与此类DR项目的用户可以与DR实施机构签订相关的定价合同,但用户在进行负荷调整时是完全自愿的,所以此类需求响应是电网 不可调度的负荷资源。
    分布式电源是一种可利用多种发电资源的发电形式,如天然气、氢气、太阳能、风能等具有环境友好特性的能源。按发电能源是否可再生将分布式电源分为两类:一类称为利用可再生能源的分布式电源,主要包括太阳能光伏、风能、地热能、海洋能等发电形式;另一类称为利用不可再生能源的分布式电源,主要包括内燃机、热电联产、燃动机、微型燃气轮机、燃料电池等发电形式。
    现有技术中,微网的能量管理只考虑分布式电源,虽然能达到能量优化,但是由于分布式发电的间歇性、不连续性,主电网为了维持电网的安全稳定运行,需为之准备大量低效而高成本的调频和备用容量,反而损失了经济性和环境效益;
    现有的微电网能量管理只考虑了单一时间尺度上的能量优化,没有实现整个调度过程中,多时间尺度上的优化协调。而由于分布式电源的发电状态随机性很强,能量管理计划需要经常调整,以往单一时间尺度的优化并不能保证能量管理的经济性;
    现有的微电网能量管理研究没有考虑微电源的发电特性、负荷的用电特性、储能设备的充放电特性,没有针对微电网发展初期的特点进行能量管理优化。
    微网能量管理系统良好运行,必须有完善的控制方案支持,当负荷或网络结构发生变化时,需对微网中各分布式电源、储能装置及负荷实现协调控制,保持电压频率稳定。在充分借鉴现有EMS研究成果基础之上,为充分发挥各种分布式能源的效益以及实现微网系统的高效、经济、安全、可靠运行,本专利设计了微电网发展初期的能量管理系统(microgrid energy management system,MGEMS)能量优化的技术方案。
    发明内容
    本发明所要解决的技术问题是,根据微电网发展初期的特点,提出从日前调度到超短期调度的多时间尺度下,需求响应资源和分布式电源共同参与的基于单目标的微网能量控制方法。
    为解决上述技术问题,本发明提供一种计及需求响应的多时间尺度微网能量控制方法,其特征在于,包括以下步骤:利用微网能量管理系统进行以下控制:
    1)日前调度控制方法:
    11)调度风力发电资源,在风力发电量占微电网总需求容量的比例不超过设定值的条件下,风力发电量全额上网,否则超出容量按发电价格从低到高的顺序依次切断风力发电机组直至满足设定值要求;
    12)调度光伏发电,如果满足电网运行约束,则全额上网,否则按发电价格从低到高的顺序,以汇流的集电线路为单位依次切断光伏发电??橹敝谅愕缤诵性际?;
    13)调度微型燃气轮机发电机,以冷/热负荷需求量确定发电量;
    14)调度柴油机,以柴油发电机最佳运行点确定调度容量;
    15)可中断负荷容量和大电网容量根据目标函数采取竞价上网的方式利用遗传算法进行能量优化控制;
    2)实时调度控制方法:根据微电源在实时阶段的发电量和用电负荷,计算容量缺额ΔP=P用电-P发电,P发电为发电量,P用电为用电负荷:
    如果出现容量缺额,则按以下步骤控制
    211)以微型燃气轮机发电机的冷/热负荷需求量确定发电量的上限为标准,进行容量调度;
    212)以柴油机最高效率可调上限为标准,进行容量调度;
    213)调用正在放电的储能设备;
    214)调用处于备用状态的储能设备;
    215)根据容量缺额情况,调整微型燃气轮机发电机和柴油机可调上下限进行滚动调度;
    216)剩下的容量缺额从大电网调度;
    如果出现容量过剩,则按以下步骤控制:
    221)对处于备用的储能设备进行充电;
    222)减少大电网调度容量至并网状态下的最低限值,并进行一定赔偿;
    223)减少可中断负荷调度容量至零,并进行容量赔偿;
    224)减少柴油机发电量,如切机容量低于柴油机最佳运行下限,则按运行成本和爬坡速率的综合排名进行柴油机的整台切除;
    3)超短期调度控制方法:根据微电源、可控负荷在超短期阶段的发电量和用电负荷计算容量缺额ΔP=P用电-P发电,
    如果出现容量缺额,则直接负荷控制容量和大电网容量利用遗传算法采取竞价上网的方式进行能量优化调度;
    如果出现容量过剩,则按31)-34)步骤控制:
    31)对处于备用的储能设备进行充电;
    32)减少大电网调度容量至并网状态下的最低限值,并进行一定赔偿;
    33)减少可中断负荷调度容量至零,并进行容量赔偿;
    34)减少柴油机发电量,如切机容量低于其最佳运行下限,则按运行成本和爬坡速率的综合排名进行柴油机的整台切除。
    前述的计及需求响应的多时间尺度微网能量控制方法,其特征在于,微网能量管理系统的模型为:
    1)光伏电池组:
    V≥Vpv.min---(1)]]>
    式中:V为光伏电池组实际输出功率下的端电压,VPV.min为光伏电池组的最小输出功率下的端电压;
    2)风力发电机组:启动条件为:
    Pless≥PwN---(2)]]>
    Δtws≥tws.min---(3)]]>
    式中:Pless为系统缺额功率;PwN为单台风电机组的额定功率;Δtws为风电机组?;奔?;tws.min为风电机组的最小?;奔?;
    当式(2)和式(3)满足时,投入风电机组;风电机组?;奔渎阕钚⊥;奔湟?,优先投入已切除时间较长的风电机组;检测满足风电机组开启条件的风电机组台数S,如果S>1,则根据投切需要将S台风电机组依次启动;需要切除风电机组时,应优先切除已投入时间Δtws较大的风电机组;
    3)根据负荷波动范围的大小,决定先切除光伏系统还是风电机组;如果负荷小范围波动即ΔP≤w1Pall,优先调节光伏系统发电,如果负荷大范围跌落,即ΔP≤w2Pall,容量大于整台风机容量,则风机整台切除:
    4)微型燃气轮机发电机:由冷/热负荷确定微型燃气轮机发电机的出力:
    QWT=PMT(1-ηMT-ηI)ηMT---(4)]]>
    Qho=QMT×ηrec×COPho---(5)]]>
    Qco=QMT×ηrec×COPCO---(6)]]>
    ηrec=T1-T2T1-T0---(7)]]>
    其中,QMT为燃气轮机排气余热量,kW;ηI为燃气轮机散热损系数,本模型中取0.03;PMT为时间间隔内的净输出电功率,kW;ηMT为时间间隔内的机组效率。另有,Qho、Qco分别为燃气轮机烟气余热提供的制热量和制冷量,kW;COPho、 COPco分别为制热系数和制冷系数,本模型中分别为1.2和0.95;ηrec为烟气余热回收效率;T0为环境温度,K;T1、T2分别为余热烟气进出溴冷机的温度,K,本模型中取573.15K和423.15K;
    5)柴油机组:满足
    P≥Pmin---(8)]]>
    tm≥tm.min---(9)]]>
    式中:P为柴油机发电功率;Pmin为柴油机发电效率最优下的最小发电功率;tm为柴油机的运行时间;tm.min为柴油机的最小运行时间;
    6)储能设备:充放电量控制在正常充放电区域,
    20%SOC80%---(10)]]>
    SOC为储能设备的荷电状态值。
    前述的计及需求响应的多时间尺度微网能量控制方法,其特征在于,微网能量管理系统的单目标优化目标函数为:
    日前优化目标函数:minCOPE(pt)=∫OT[Σa=1sCLa(Pjt)+CPE(Pgridt)]dt---(11)]]>
    超短期优化目标函数:minCOPE(pt)=∫OT[Σa=1sCLa(Pjt)+CPE(Pgridt)]dt---(12)]]>
    式中:COPE为微电网的运行成本;j为系统中需求响应负荷的编号;Pjt为需求响应负荷的有功功率切除量;CLa为第a个需求响应用户的切负荷成本;CPE为微电网从大电网购电的支出;Pgridt为微电网与大电网的交互功率,Pt为微电网所需有功功率总量,t为当前能量调度时刻,T为能量调度安排时段,S为需求响应负荷的类型数量最大值。
    微网能量管理系统的约束条件为:
    等式约束条件包括:
    1)电负荷需求平衡:Σi=1N∫t-δtPitdt+Σj=1M∫t-δtPitdt+∫t-δtPgridtdt=∫t-δtPLtdt---(13)]]>
    注:Pit为第i个微电源的功率输出(储能设备功率放电时,Pit为正;储能设备功率充电时,Pit为正),Pjt为第j个用户提供的切断负荷量,Pgridt为微电网与大电网间的交互功率(离网阶段,Pgridt为零);PLt为负荷需求功率,δ为能量调度安排时段;
    2)冷热负荷需求平衡:Σi=1NQit+Σj=1MQjt=QLt---(14)]]>
    Qit为第j台微型燃气轮机发电机供热/冷量;N为微型燃气轮机发电机总台数;Qjt为其他方式的供热/冷量;M为其他方式供热/冷机组数量;QLt为用户需求供热/冷量。
    不等式约束条件:
    微电源功率输出限制:PiminPitPimax---(15)]]>
    Pit为微电源功率输出值,为微电源功率输出最小允许值,为微电源功率输出最大允许值,
    启停时间限制:Td≥Td.min---(16)]]>
    TS≥Ts.min---(17)]]>
    注:Td为微电源机组运行时间;Td.min为微电源机组最小允许运行时间;TS为微电源机组?;奔?;Ts.min为微电源机组最小允许?;奔?;
    交互容量约束:PlineminPlinetPlinemax---(18)]]>
    并网阶段,微电网系统与主电网系统能够允许交互的最大容量约束,是两者之间所达成的供求协议或者联络线的物理传输容量限制;Plinet为微电网系统与主电网系统的联络线传输功率;为允许交互的最小功率约束;为允许交互的最大功率约束;
    爬坡速率约束:V≥Vmin---(19)]]>
    v为微电源对应调度阶段的爬坡速度;Vmin为微网能量管理系统给出爬坡速 度要求的最小值;
    输电线潮流约束:IlineminIt.lineIlinemax---(20)]]>
    It.line为第t条输电线的潮流值;为第t条输电线的潮流约束最小值;为第t条输电线的潮流约束最大值;
    节点电压约束:UpointminUt.pointUpointmax---(21)]]>
    Ut.point为第t节点的电压值;为第t节点的电压上下限;
    微电源中标占比约束:
    为第i类微电源在总发电容量中的百分比;为第i类微电源在总发电容量中的百分比上限;i类微电源主要有风力发电机和柴油机等旋转发电设备;
    储能设备约束:储能系统存在放电状态udish(t)、备用状态ustandby(t)、最大充电功率充电状态uch(t)、半功率充电状态usup-ch(t)4种状态:
    运行状态约束:udish(t)+ustandby(t)+uch(t)+usup-ch(t)=1---(23)]]>
    放电功率约束:Pdish(t)Npulse(t)prate---(24)]]>
    脉冲因素取为0.8≤Npulse(t)≤1,且Npulse(t)=Npulse(t+δ),Pdish为储能系统的放电功率,prate为储能系统的额定功率;充电功率约束:
    0Pch(t)1.2Prate---(25)]]>
    Pch(t)=Pch(t+δ)---(26)]]>
    Psup-ch(t)=Psup-ch(t)=0.5Pch(t)---(27)]]>
    Pch为储能系统的充电功率,Psup-ch为储能系统的半充电功率,Prate为储能系统的额定功率;
    储能设备能量状态约束:Ebat_minEbat(t)Ebat_max---(28)]]>
    Ebat为储能设备充放电能量,Ebat_max为储能设备最大充放电容量,Ebat_min为储 能设备最小充放电容量;
    充放电次数约束:
    Σk=0NT|udish[t0+(k+1)δ]-udish(t0+)|λ1---(29)]]>
    Σk=0NT|uch[t0+(k+1)δ]-uch(t0+)|λ2---(30)]]>
    Σk=0NT|usup-ch[t0+(k+1)δ]-usup-ch(t0+)|λ2---(31)]]>
    式中λ1、λ2为充放电次数,t0为储能设备初始调度时刻,(k+1)为储能设备的调度阶段数量,NT为调度储能设备的总时段数量。
    本发明所达到的有益效果:
    现有技术中,微网的能量管理只考虑分布式电源,虽然能达到能量优化,但是由于分布式发电的间歇性、不连续性,主电网为了维持电网的安全稳定运行,需为之准备大量低效而高成本的调频和备用容量,反而损失了经济性和环境效益;本专利方案将需求响应资源纳入到微网能量优化管理的范畴,利用遗传优化算法寻求保证环境效益最优下的经济组合,增强了分布式电源的可调度性能,减少了主电网的调频和备用容量,提高电网全周期运行的经济性。本发明针对各需求响应资源和分布式电源的调度特性,在调度方案中设计了各类需求响应和分布式电源适合调度的时间尺度。
    现有的微电网能量管理只考虑了单一时间尺度上的能量优化,没有实现完整调度过程的协调优化,本专利在日前、实时、超短期的多时间尺度上进行微网能量优化管理,并基于目标函数和约束条件设计了一套完整的优化管理调度方案,有效解决了分布式电源发电状态随机性强等问题。
    本发明将可调度的需求响应资源纳入到微网能量管理的范畴,通过研究分布式能源的发电特性和用户侧负荷的用电特性,根据微电网推广初期的发展特点,有针对性的制定了优化的目标函数和约束条件,从多时间尺度上进行各任 务的分解协调,旨在利用用户侧负荷和储能设备的可控性和灵活性,弥补分布式电源发电的间歇性和不连续性,在保证环境效益最优的同时,减少了主电网的调频和备用容量,提高电网全周期运行的经济性。
    附图说明
    图1为发展初期的MGEMS并网控制方法的流程图;
    图2遗传算法的运算过程示意图;
    图3为发展初期的MGEMS能量交易控制结构图;
    具体实施方式
    发展初期的MGEMS调度方法:针对发展初期的MGEMS,设计如下并网阶段的微电网能量优化调度方法,由日前优化管理、实时优化管理和超短期优化管理三个阶段分别开展,从以环境效益为导向过渡到以安全性和速动性为导向,具体方案内容及实施步骤如下:
    日前优化管理:
    1)调度风力发电资源,在不超过一定占比的条件下,风力发电量全额上网;
    2)调度光伏发电,在满足电网运行约束的前提下全额上网;
    3)调度微型燃气轮机发电资源,以冷/热定电负荷为目标进行控制;
    4)调度柴油机发电资源,日前优化中以其最佳运行点确定调度容量;
    5)可中断负荷容量和大电网容量根据目标函数采取竞价上网的方式利用遗传算法进行能量优化调度;
    实时调度控制方法:根据微电源在实时阶段的发电情况和用电负荷情况,计算容量缺额;
    如果出现容量缺额:
    1)以微型燃气轮机发电机的冷/热负荷定发电量的上限为标准,进行容量调 度;
    2)以柴油机最高效率可调上限为标准,进行容量调度;
    3)调用正在放电的储能设备(电价高峰时段);
    4)调用处于备用状态的储能设备(电价高峰时段);
    5)根据容量缺额情况,调整微型燃气轮机发电机和柴油机可调上下限进行滚动调度;
    6)剩下的容量缺额从大电网调度;
    如果出现容量过剩:
    1)对处于备用储能设备进行充电;
    2)减少大电网调度容量,并进行一定赔偿;
    3)减少可中断负荷调度容量,并进行容量赔偿;
    4)如切机容量低于柴油机最佳运行下限,则按运行成本和爬坡速率的综合排名进行柴油机的整台切除;
    超短期调度控制方法:根据微电源、可控负荷在超短期阶段的发电情况和用电负荷情况,计算容量缺额;
    如果出现容量缺额:直接负荷控制容量和大电网容量利用遗传算法采取竞价上网的方式进行能量优化调度;
    如果出现容量过剩:
    1)对处于备用的储能设备进行充电;
    2)减少大电网调度容量,并进行一定赔偿;
    3)减少可中断负荷调度容量,并进行容量赔偿;
    4)如切机容量低于其最佳运行下限,则按运行成本和爬坡速率的综合排名进行柴油机的整台切除。
    本方法中将遗传算法用于微网能量管理系统中,遗传算法在整个进化过程中的遗传操作是随机性的,但它所呈现出的特性并不是完全随机搜索的,它能够有效的利用历史信息来推测下一代期望性能有所提高的寻优点集。这样一代一代的不断进化,最后收敛到一个最适应环境的个体上,求得问题的最优解。
    遗传算法(GA)的计算流程如下:
    (1)群体初始化和编码
    群体初始化是指随机产生的若干个个体组成一个群体,构成第一代解群。一般说来,这些初始解的素质都很差,GA的任务是从第一代群体出发,模拟进化过程,择优汰劣,最后得出最佳的群体和个体,以满足优化要求。
    (2)适应值与评价
    将个体的变量取值代入适应函数算出其适应值,适应值越大,表示该个体有较高的适应性。适应值用以评价个体的优劣,为群体进化提供依据。
    (3)选择运算
    对于任一个体,我们可以通过适应度函数来计算出它的适应度,选择算子就是建立在对个体适应度进行评估的基础上的,也就是说各个个体的适应度都会通过选择算子进行选择,这样做的目的主要是为了避免基因缺失、提高全局收敛性和计算效率,从而保证后面的交叉算子和变异算子正常工作。
    (4)交叉运算
    遗传算法中的所谓交叉运算,是指两个随机配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。交叉运算是遗传算法区别于其它算法的重要特征,它在遗传算法中起着关键作用,是产生新个体的主要方法。
    (5)变异运算
    遗传算法中所谓的变异运算,是指将个体染色体编码串中的某些基因座上的 基因值用该基因座的其它等位基因来替换,从而形成一个新的个体。在遗传算法中使用变异算子主要有两个目的,一是改善遗传算法的局部搜索能力,二是维持群体的多样性,防止出现早熟现象。
    遗传算法的运算过程示意图如图2所示。
    根据微网能量管理系统的要求,初始化遗传算法的参数,随机生成解的初始种群,根据能量管理系统的计算目标,生成单目标适应度函数,基于此函数计算初始种群中每个个体的适应度值大小,此适应度值大小决定了每个个体被选择的概率,并按照初始的交叉和变异概率进行相应操作,以得到新的种群。遗传算法在求解机组调度优化问题时,不需要有很强的技巧,它在一定程度上避免了优化问题本身的复杂性,克服了传统的排序(scheduling)、路线调度(routing)、布局(layout)等模式方法所无法避免的困难。
    发展初期的MGEMS模型:在发展初期的微电网中,微电源和负荷调度的容量都较小,上传数据量和控制信息数量都不大,可以采用典型的主从控制模型。并网运行时,所有微电源逆变器均采用PQ控制方法,输出MGEMS指定的有功功率、无功功率。孤网运行时,主控微电源快速转换为电压和频率控制方法,跟踪负荷变化并保持频率电压稳定。MGEMS是整个微电网系统的核心单元,负责统筹安排最佳的电能调度交易计划。
    发展初期MGEMS的能量交易控制结构如下图3,根据微电网目前发展的特点,和国家有关政策规定,MGEMS设置微电源的补贴电价和上网电价不按发电种类、发电效率进行区分,微电网也只能从主电网购电,暂不考虑向电网售电。在微电网的发展初期,结合微电源发电特性和需求响应负荷资源的用电特性,得到微电网并网阶段的能量优化方案如下:
    1.由于风力发电和光伏发电均具有不可控性,而且作为可再生能源两者不 直接消耗燃料,无环境污染,同时具有快速启动、快速增减负荷等优点,因此以环境效益为主导,优先利用其机组出力。风电机组频繁启?;嵩斐苫的ニ?,影响寿命,而光伏电池不同于风力发电机组,不存在机械磨损问题,可以方便地实现功率变化。
    2.光伏并网逆变器直流侧存在最小电压约束,当光伏电池组的电压低于下限VPV.min时,逆变器无法正常工作,所以VPV.min对应了光伏电池组的最小输出功率。利用光伏并网逆变器控制光伏阵列的工作点电压,使其既可以工作在最大功率点,也可以工作在低于最大功率点的某一设定功率值处,因此设定下述能量优化的条件:
    V≥Vpv.min---(1)]]>
    式中:V为光伏电池组实际输出功率下的端电压,VPV.min为光伏电池组的最小输出功率下的端电压。
    3.对于风力发电而言,考虑到其发电机组的频繁启?;嵊跋炱涫褂檬倜?,因此可设定下述启动条件:
    Pless≥PwN---(2)]]>
    Δtws≥tws.min---(3)]]>
    式中:Pless为系统缺额功率;PwN为单台风电机组的额定功率;Δtws为风电机组?;奔?;tws.min为风电机组的最小?;奔?。
    当式满足时,投入风电机组,这样可避免小功率波动造成的风电机组频繁投切;风电机组?;奔湫枰阕钚⊥;奔湟?,可优先投入已切除时间较长的风电机组;检测满足风电机组开启条件的风电机组台数S,如果S>1,则根据投切需要将S台风电机组依次启动。同理,需要切除风电机组时,应优先切除已投入时间Δtws较大的风电机组。
    5.设定负荷波动限制,根据负荷波动范围的大小,决定先切除光伏系统还是风电机组;一旦负荷小范围波动ΔP≤w1Pall,需优先调节光伏系统发电,一旦负荷大范围跌落ΔP≤w2Pall,容量大于整台风机容量,需优先考虑风机整台切除:
    6.对于微型燃气轮机发电机而言,为使冷热电三联供系统运行效率最高,其遵循“以冷/热定电”的原则,由冷/热负荷确定微型燃气轮机发电机的出力:
    QWT=PMT(1-ηMT-ηI)ηMT---(4)]]>
    Qho=QMT×ηrec×COPho---(5)]]>
    Qco=QMT×ηrec×COPCO---(6)]]>
    ηrec=T1-T2T1-T0---(7)]]>
    其中,QMT为燃气轮机排气余热量,kW;ηI为燃气轮机散热损系数,本模型中取0.03;PMT为时间间隔内的净输出电功率,kW;ηMT为时间间隔内的机组效率。另有,Qho、Qco分别为燃气轮机烟气余热提供的制热量和制冷量,kW;COPho、COPco分别为制热系数和制冷系数,本模型中分别为1.2和0.95;ηrec为烟气余热回收效率;T0为环境温度,K;T1、T2分别为余热烟气进出溴冷机的温度,K,本模型中取573.15K和423.15K。
    7.对于柴油机组而言,其最大允许输出功率应能够满足在可再生能源出力为0且电池容量不能满足放电要求时的敏感负荷需求。由于柴油机组低负荷运行时,发电效率下降且燃油消耗量接近满载,因此需要设定柴油发电机最小发电功率约束,同时,为了减少频繁启停对柴油机寿命的影响,应尽可能设置最小运行时间:
    P≥Pmin---(8)]]>
    tm≥tm.min---(9)]]>
    式中:P为柴油机发电功率;Pmin为柴油机发电效率最优下的最小发电功率; tm为柴油机的运行时间;tm.min为柴油机的最小运行时间。
    8.储能设备在电价低谷的夜间将作为用电负荷考虑,在电价高峰时段进行实时和超短期调度;在能量型储能设备工作过程中,应保持荷电状态在一定范围内,较大的充放电电流、储能设备过充或过放等都会对储能设备造成伤害,充放电都应控制在正常充放电区域。
    20%SOC80%---(10)]]>
    在微电网发展初期,微电源的容量不足,电压和频率仍然由大电网提供刚性支撑,电网内的负荷波动,频率和电压扰动由大电网承担,所以超短期调度期间若发生容量缺额,各微源不参与能量优化,并由大电网的AGC(自动发电控制)来实现最后的能量平衡。
    在微电网发展初期,需求响应策略还不完备,可控负荷尚不具备参与市场竞价的条件,且容量和形式较少,能优先推广的有可中断负荷和直接负荷控制??芍卸细汉稍谌涨坝呕芾硎辈斡氲鞫?,容量较大,直接负荷控制在超短期优化管理时参与调度,这两种需求响应模式都处于试点推广阶段,可以调度的容量较小,但是覆盖面可以较广,以期总结需求侧管理实施的经验。
    在微电网发展初期,微电源发电技术尚未成熟,发电成本较高,与大电网的发电电价比起来没有竞争优势,所以在日前优化管理中主要以环境效益为主导,兼顾经济性,而在超短期优化管理中,微电网调度以安全性和速动性为主导。
    在微电网发展初期,电力供应仍较为紧张,且受技术和装备的限制,不考虑向主配网售电模式。
    发展初期MGEMS的优化目标:
    微电网能量优化运行数学模型的目标函数和约束条件应在区分微电网发展 初期和远景阶段的前提下,充分考虑微电源的输出特性、负荷需求特性、环境成本、系统可靠性等方面。
    在微电网发展初期,受生产技术、生产工艺等方面原因限制,微电源的发电成本仍然较高,和大电网燃煤机组的发电成本没有可比性,但考虑到微电源环境效益高,且目前微电源上网电价尚未加区分,为了试点推广微电网的发展,风电、光伏等可再生能源一旦发电,则可以全额上网,微型燃气轮机发电机、柴油机、储能设备等微源在考虑冷/热负荷需求、最佳运行点和调峰调频需要的前提下,也采取最大限度上网的售电模式。在微电网发展初期采取这种售电模式后,其能量优化管理更关注于调度策略如何高效地维持微电网的安全可靠运行,目标函数将变得简单,无需考虑微电源的运行成本、折旧成本和环境效益。结合微电网在日前优化管理、实时优化管理和超短期优化管理中的调度策略分析,得到并网时的单目标优化函数如下:
    (1)并网阶段
    日前优化管理:minCOPE(pt)=∫OT[Σa=1sCLa(Pjt)+CPE(Pgridt)]dt---(11)]]>
    注:此阶段需求响应类型为可中断负荷。
    超短期优化管理:minCOPE(pt)=∫OT[Σa=1sCLa(Pjt)+CPE(Pgridt)]dt---(12)]]>
    注:此阶段需求响应类型为直接负荷控制。
    式中:COPE为微电网的运行成本;j为系统中需求响应负荷的编号;Pjt为需求响应负荷的有功功率切除量;CLa为第a个需求响应用户的切负荷成本;CPE为微电网从大电网购电的支出;Pgridt为微电网与大电网的交互功率。
    能量管理优化的约束条件
    等式约束条件:
    电负荷需求平衡:Σi=1N∫t-δtPitdt+Σj=1M∫t-δtPitdt+∫t-δtPgridtdt=∫t-δtPLtdt---(13)]]>
    注:Pit为第i个微电源的功率输出(储能设备功率放电时,Pit为正;储能设备功率充电时,Pit为正),Pjt为第j个用户提供的切断负荷量,Pgridt为微电网与大电网间的交互功率(离网阶段,Pgridt为零);PLt为负荷需求功率。
    冷热负荷需求平衡:Σi=1NQit+Σj=1MQjt=QLt---(14)]]>
    注:Qit为第j台微型燃气轮机发电机供热/冷量;Qjt为其他方式得供热/冷量;QLt为用户需求供热/冷量。
    不等式约束条件:
    微电源功率输出限制:PiminPitPimax---(15)]]>
    不同的微电源功率输出上下限不同,且会随着滚动调度过程,不断调整输出限制;微型燃气轮机发电机由其冷热负荷供应的上下限确定;柴油机由其最佳运行点的上下限确定。
    启停时间限制:Td≥Td.min---(16)]]>
    TS≥Ts.min---(17)]]>
    注:Td为微电源机组运行时间;Td.min为微电源机组最小允许运行时间;TS为微电源机组?;奔?;Ts.min为微电源机组最小允许?;奔?。此类微电源一般为旋转发电设备,惯性较大,存在机械磨损等问题。
    交互容量约束:
    PlineminPlinetPlinemax---(18)]]>
    注:并网阶段,微电网系统与主电网系统能够允许交互的最大容量约束,是两者之间所达成的供求协议或者联络线的物理传输容量限制;Plinet为微电网系统与主电网系统的联络线传输功率;为允许交互的最小功率约束;为允许交互的最大功率约束
    爬坡速率约束:V≥Vmin---(19)]]>
    注:旋转发电设备调整发电功率受设备爬坡速度的限制,为了使能量优化管理能按照计划进行,确保微电网安全可靠,需要在各个阶段给定旋转发电设备的爬坡约束,越接近超短期优化管理阶段,爬坡约束越严格。v为微电源对应调度阶段的爬坡速度;Vmin为MGEMS给出爬坡速度要求的最小值。
    输电线潮流约束:IlineminIt.lineIlinemax---(20)]]>
    注:It.line为第t条输电线的潮流值;为第t条输电线的潮流约束最小值;为第t条输电线的潮流约束最大值。
    节点电压约束:UpointminUt.pointUpointmax---(21)]]>
    注:Ut.point为第t节点的电压值;为第t节点的电压上下限。
    微电源中标占比约束:
    注:为避免旋转设备调度容量过大而造成的频繁启停,需给出其中标容量的占比约束;为第i类微电源在总发电容量中的百分比;为第i类微电源在总发电容量中的百分比上限;i类微电源主要有风力发电机和柴油机等旋转发电设备。
    储能设备约束:
    储能系统存在放电状态udish(t)、备用状态ustandby(t)、最大充电功率充电状态uch(t)、半功率充电状态usup-ch(t)4种状态。当充电快结束时,须用一半的最大充电功率对电池进行短时充电,这种状态简称为半功率充电状态usup-ch(t)。
    (1)状态约束
    一个调度周期过程,充电状态uch(0,1)、半充电状态usup-ch(0,1)、放电状态udish(0,1)、备用状态ustandby(0,1)四种状态中,充电状态与放电状态,半充电状态与放电状态互相排斥,即一个调度周期过程中,储能设备不能由充电或者半充电转为放电状态,或者由放电转为充电或者半充电状态,直到下一个调 度周期,其以新的状态参与调度投标。
    (2)运行状态约束:udish(t)+ustandby(t)+uch(t)+usup-ch(t)---(23)]]>
    (3)放电功率约束:Pdish(t)Npulse(t)prate---(24)]]>
    注:基于储能设备内部温度,其瞬时放电功率有一定的限制,该限制称为脉冲限制(Npulse)。为了实现削峰填谷功能,根据其可持续放电时间与脉冲因数特性,可将脉冲因素取为0.8≤Npulse(t)≤1,且Npulse(t)=Npulse(t+δ),一个调度过程的脉冲因素需维持恒定。Pdish为储能系统的放电功率,prate为储能系统的额定功率。
    (4)充电功率约束:0Pch(t)1.2Prate---(25)]]>
    Pch(t)=Pch(t+δ)---(26)]]>
    Psup-ch(t)=Psup-ch(t)=0.5Pch(t)---(27)]]>
    注:对储能设备进行最大功率充电时,所选取的充电功率一般大于额定功率,且一个调度过程中的充电功率和半充电功率需保持恒定。Pch为储能系统的充电功率,Psup-ch为储能系统的半充电功率,Prate为储能系统的额定功率。
    (5)储能设备能量状态约束:Ebat_minEbat(t)Ebat_max---(28)]]>
    在储能设备的充放电循环过程中,储能设备内部所存储的能量需在其最大可承受范围之内,Ebat为储能设备充放电能量,Ebat_max为储能设备最大充放电容量,Ebat_min为储能设备最小充放电容量。
    (8)充放电次数约束
    Σk=0NT|udish[t0+(k+1)δ]-udish(t0+)|λ1---(29)]]>
    Σk=0NT|uch[t0+(k+1)δ]-uch(t0+)|λ2---(30)]]>
    Σk=0NT|usup-ch[t0+(k+1)δ]-usup-ch(t0+)|λ2---(31)]]>
    式中充放电次数λ1、λ2的具体取值可根据储能设备条件及其在系统运行中所 发挥的作用等因素综合考虑而确定。
    以上已以较佳实施例公开了本发明,然其并非用以限制本发明,凡采用等同替换或者等效变换方式所获得的技术方案,均落在本发明的?;し段е?。

    关 键 词:
    需求 响应 多时 尺度 能量 控制 方法
      专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:计及需求响应的多时间尺度微网能量控制方法.pdf
    链接地址://www.4mum.com.cn/p-5778733.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

    [email protected] 2017-2018 www.4mum.com.cn网站版权所有
    经营许可证编号:粤ICP备17046363号-1 
     


    收起
    展开
  • 四川郎酒股份有限公司获第十二届人民企业社会责任奖年度环保奖 2019-05-13
  • 银保监会新规剑指大企业多头融资和过度融资 2019-05-12
  • 韩国再提4国联合申办世界杯 中国网友无视:我们自己来 2019-05-11
  • 中国人为什么一定要买房? 2019-05-11
  • 十九大精神进校园:风正扬帆当有为 勇做时代弄潮儿 2019-05-10
  • 粽叶飘香幸福邻里——廊坊市举办“我们的节日·端午”主题活动 2019-05-09
  • 太原设禁鸣路段 设备在测试中 2019-05-09
  • 拜耳医药保健有限公司获第十二届人民企业社会责任奖年度企业奖 2019-05-08
  • “港独”没出路!“梁天琦们”该醒醒了 2019-05-07
  • 陈卫平:中国文化内涵包含三方面 文化复兴表现在其中 2019-05-06
  • 人民日报客户端辟谣:“合成军装照”产品请放心使用 2019-05-05
  • 【十九大·理论新视野】为什么要“建设现代化经济体系”?   2019-05-04
  • 聚焦2017年乌鲁木齐市老城区改造提升工程 2019-05-04
  • 【专家谈】上合组织——构建区域命运共同体的有力实践者 2019-05-03
  • 【华商侃车NO.192】 亲!楼市火爆,别忘了买车位啊! 2019-05-03